مدل سازی جواب های سالیتونی معادله غیر خطی تعمیم یافته رادهاکریشنان-کاندو-لاکشمینن

نوع مقاله: مقاله پژوهشی

نویسنده

رییس دانشکده فنی و مهندسی مینودشت- عضو هیات علمی دانشگاه گنبد

چکیده

بیشتر مسائل در فیزیک، ریاضی و مهندسی از جمله مکانیک سیالات (جریان سیال و انتقال حرارت و...) فیزیک پلاسما، لیزر، اپتیک و معادلات به طور ذاتی غیر خطی هستند. اکثریت این مسائل توسط معادلات دیفرانسیل جزئی و معمولی شکل پیدا می کنند. به جزء تعداد محدودی از این معادلات که داری حل تحلیلی دقیق هستند، بیشتر این مسائل حل دقیق ندارند؛ که باید به وسیله شیوه‌های جدیدی مبتنی بر کد نویسی هایی بر پایه نرم افزارهایی همچون میپل و متلب حل شوند. در سال‌های اخیر، تحقیقاتی زیادی برای حل این نوع از معادلات صورت گرفته است که منجر به روش‌های جدیدی برای حل این معادلات شده است. در این نوشتار برانیم تا با استفاده از یک تعمیم جدید برای فرم جواب ها در روش تبدیل بکلاند، با استفاده از نرم افزار میپل جواب های سالیتونی جدیدی برای معادله غیرخطی تعمیم یافته رادهاکریشنان-کاندو-لاکشمینن را بیان می کنیم. از مزایای این روش می توان به تنوع جواب های حاصل اشاره کرد که در برگیرنده جواب های مطرح شده این گونه معادلات با چندین روش مختلف می باشد.

کلیدواژه‌ها


عنوان مقاله [English]

Soliton solutions modeling of Generalized Radhakrishnan- Kundu-Lakshmanan equation

نویسنده [English]

  • Ahmad Neirameh
Head of Minudasht Engineering Faculty, Member of Gonbad Kavous University
چکیده [English]

Most problems in physics, mathematics and engineering, including fluid mechanics (fluid flow, heat transfer, etc.), plasma physics, laser, optics, and equations are intrinsically nonlinear. Most of these problems are shaped by ordinary differential equations. Except for a limited number of these equations that are rigorous in analytical solutions, most of these problems do not resolve accurately; they need to be solved by new methods based on coding based on software such as Mapp and Matlab. In recent years, a lot of research has been done to solve these types of equations, which has led to new methods for solving these equations. In this paper, using a new generalization for the form of solutions in the convergence method, we use the Miep software to describe the new soliton solutions for the Generalized Radhakrishnan, Kundu, Lakshmanan equation. One of the advantages of this method is the variety of solutions obtained, which includes the solutions of these equations with several different methods.

کلیدواژه‌ها [English]

  • Generalized Radhakrishnan
  • Kundu
  • Lakshmanan equation
  • Soliton solutions
  • wave equation

[1] M. Alquran, Bright and dark soliton solutions to the Ostrovsky–Benjamin–
Bona–Mahony (OS-BBM) equation, J. Math. Comput. Sci. 2 (1) (2012) 15.
[2] H. Rezazadeh, A. Korkmaz, M. Eslami, J. Vahidi, R. Asghari, Traveling wave
solution of conformable fractional generalized reaction Duffing model
bygeneralized projective Riccati equation method, Opt. Quantum. Electron. 50
(2018) 150.
[3] M. Eslami, M. Mirzazadeh, B.F. Vajargah, A. Biswas, Optical solitons for the
resonant nonlinear Schrödinger’s equation with time-dependentcoefficients by the
first integral method, Optik 125 (13) (2014) 3107–3116.
[4] M. Eslami, F.S. Khodadad, F. Nazari, H. Rezazadeh, The first integral method
applied to the Bogoyavlenskii
equations by means of conformablefractional
derivative, Opt. Quantum. Electron. 49 (12) (2017) 391.
[5] Q. Zhou, M. Ekici, A. Sonmezoglu, M. Mirzazadeh, M. Eslami, Optical solitons
with Biswas–Milovic equation by extended trial equation method,Nonlinear Dyn. 84
(4) (2016) 1883–1900.
[6] H. Aminikhah, A.R. Sheikhani, H. Rezazadeh, Sub-equation method for the
fractional regularized long-wave equations with conformable fractionalderivatives,
Sci. Iran. Trans. B: Mech. Eng. 23 (3) (2016) 1048.

[7] M. Eslami, Trial solution technique to chiral nonlinear Schrodinger’s equation in
(1+ 2)-dimensions, Nonlinear Dyn. 85 (2) (2016) 813–816.
[8] H. Aminikhah, A.H. Sheikhani, H. Rezazadeh, Travelling wave solutions of
nonlinear systems of PDEs by using the functional variable method,Boletim da
Sociedade Paranaense de Matemática 34 (2) (2015) 213–229.
[9] M. Hubert, G. Betchewe, M. Justin, S.Y. Doka, K.T. Crepin, A. Biswas, Q.
Zhou, A.S. Alshomrani, M. Ekici, S.P. Moshokoa, M. Belic, Optical solitons
withLakshmanan–Porsezian–Daniel model by modified extended direct algebraic
method, Optik 162 (2018) 228–236.
[10] J. Manafian, M. Foroutan, A. Guzali, Applications of the ETEM for obtaining
optical soliton solutions for the Lakshmanan–Porsezian–Daniel model,Eur. Phys. J.
Plus 132 (11) (2017) 494.
[11] A. Bansal, A. Biswas, H. Triki, Q. Zhou, S.P. Moshokoa, M. Belic, Optical
solitons and group invariant solutions to Lakshmanan–Porsezian–Danielmodel in
optical fibers and PCF, Optik 160 (2018) 86–91.
[12] A. Biswas, Y. Yildirim, E. Yasar, Q. Zhou, S.P. Moshokoa, M. Belic, Optical
solitons for Lakshmanan–Porsezian–Daniel model by modified simpleequation
method, Optik 160 (2018) 24–32.
[13] A. Biswas, M. Ekici, A. Sonmezoglu, H. Triki, F.B. Majid, Q. Zhou, S.P.
Moshokoa,
M. Mirzazadeh, M. Belic, Optical solitons withLakshmanan–Porsezian–
Daniel model using a couple of integration schemes, Optik 158 (2018) 705–711.
[14] J. Guzman, R.T. Alqahtani, Q. Zhou, M.F. Mahmood, S.P. Moshokoa, M.Z.
Ullah, A. Biswas, M. Belic, Optical solitons for Lakshmanan–Porsezian–
Danielmodel with spatio-temporal dispersion using the method of undetermined
coefficients, Optik 144 (2017) 115–123.
[15] C. Yan, A simple transformation for nonlinear waves, Phys. Lett. A 224 (1–2)
(1996) 77–84.
[16] Z. Yan, New explicit travelling wave solutions for two new integrable coupled
nonlinear evolution equations, Phys. Lett. A 292 (1–2) (2001) 100–106.
[17] G. Yel, H.M. Baskonus, H. Bulut, Novel archetypes of new coupled Konno–
Oono equation by using sine–Gordon expansion method, Opt. Quantum.Electron. 49
(9) (2017) 285.
[18] H.M. Baskonus, T.A. Sulaiman, H. Bulut, On the novel wave behaviors to the
coupled nonlinear Maccaris system with complex structure, Optik 131(2017) 1036–
1043.