Dicluster stopping power of a two-dimensionalelectron gas at high velocities

Authors

Abstract

  In this paper, we calculate the dicluster stopping power of a two dimensional electron gas based on the dielectric function formalism at high velocities and temperatures. The dielectric function is derived by using the method of moments in which the effects of correlation have been included, and from that we obtain the dicluster stopping power in terms of the inter-ion spacing for different values of coupling coefficient, degeneracy parameter and velocity of projectile. The results show that with decreasing the coupling coefficient or increasing the degeneracy parameter, the Friedel oscillations appear at shorter inter-ion distances and quickly damped at higher velocities. Also, it is found out that the stopping power of the system is proportional to the inverse of the dicluster's velocity.   

Keywords


[1]  N. R. Arista; “Energy Loss of an Electric Dipole in a Free-Electron Gas”;Phys. Rev. A 65 (2002) 022902 .
[2]  D. J. Mowbray, C. Sangwoo, Z. L. Miskovic, F. O. Goodman, and Y. N. Wang; “Dynamic Interactions of Fast Ions with Carbon Nanotubes”; Nuclear Instruments and Methods in Physics Research B 230 (2005) 142-147.
[3]     M. C. Tufan, A. KAoroglu, and H. GAumAus; “Stopping Power Calculations for Partially Stripped Projectiles in High Energy Region”; Acta physica polonica A 107 (2005) 3.
[4]    Yu. V. Arkhipov, A. Askaruly, D. Ballester, A. E. Davletov,I. M. Tkachenko, and G. Zwicknagel; “Dynamic Properties of One-Component Strongly Coupled Plasmas: The Sum-Rule Approach”; Phys. Rev. E 81 (2010) 026402.
[5]   E. Zaremba, I. Nagy, and P. M. Echenique; “Nonlinear Screening and Stopping Power in Two-Dimensional Electron Gases”; Phys. Rev. B 71 (2005) 125323.
[6]     S. Lloyd, M. Babiker, and J. Yuan; “Quantized Orbital Angular Momentum Transfer and Magnetic Dichroism in The Interaction of Electron Vortices with Matter”; Phys. Rev. Let. 108 (2012) 074802.
[7]   T. Krüger, I. Tews, K. Hebeler, and A. Schwenk; "Neutron Matter from Chiral Effective Field Theory Interactions”; Phys. Rev. C 88 (2013) 025802.
[8]    J. E. Turner; “Calculation of Stopping Power of a Heavy Charged Particle in Matter”; Health Physics Pergamon 13 (1967) 1255-1263 .
[9]   N. R. Arista and A. G. Marti; “Cluster Stopping Power for an Electron Gas at Finite Temperatures: Calculations for Hydrogen and Water Clusters”;J. Phys: Condens. Matter 3 (1991) 7932-7934.
[10]   A. Bret and C. Deutsch; “Stopping Power of Extended Cluster and Ion Charge Distributions in an Arbitrarily Degenerate Electron Fluid”; Phys. Rev. E 47 (1993) 2.
[11]  J. F. Ziegler, M. D. Ziegler, J. P. Biersack; “The Stopping and Range of Ions in Matter”; Nuclear Instruments and Methods in Physics Research B 268 (2010) 1818-1823.
[12]   N. R. Arista and M. A. Fuentes; “Interaction of Charged Particles with Surface Plasmons in Cylindrical Channels in Solids”; Phys. Rev. B 63 (2001) 165401.
[13]   J. Ortner and I. M. Tkachenko; “Stopping Power of Strongly Coupled Electronic Plasmas: Sum Rules and Asymptotic Forms”; Phys. Rev. E 63 (2001) 026403.
[14]    A. Bret and C. Deutsch; “Dicluster Stopping in a Two-Dimension Electron Fluid”; Nucl. Instrum. Methods Phys. Res. A 415 (1998) 703.
[15]    Y. N. Wang and T. C. Ma; “ Stopping Power Theory for Fast Ions Moving Through Two-Dimensional Targets: Harmonic Oscillator Model”; Phys. Lett. A 221 (1996) 134-137.
[16]    I. Nagy; “Stopping Power of a Two-Dimensional Electron Gas for Heavy Particles”; Phys. Rev. B 51 (1995) 1.
[17]    D. Ballester, A. M. Fuentes, and I. M. Tkachenko; “Polarizational Stopping Power of Heavy-Ion Diclusters in Two-Dimensional Electron Liquids”; Phys. Rev. B 75 (2007) 115109
[18]  A. Krakovsky and J. K. Percus; “Nonlinear Calculation of The Stopping Power of a Two-Dimensional Electron Gas for Heavy Particles”; Phys. Rev. B 52 (1995) R2305 .
[19]    A. Bergara, I. Nagy, and P. M. Echenique; “Energy-Loss Rates of Heavy and Light Charged Particles in a Two-Dimensional Electron Gas”; Phys. Rev. B 55 (1997) 12864.
[20]    Y. N. Wang and T. C. Ma; “Consistent Calculation of the Stopping Power for Slow Ions in Two-Dimensional Electron Gases”; Phys. Rev. A 55 (1997) 2087.
[21]  C. C. Montanari and J. E. Miraglia; “Stopping Power for Swift  DressedIons”; Phys. Rev. A 73 (2006) 024901.
[22]      N. R. Arista; “Stopping of Molecules and Clusters”; Nuclear Instruments and Methods in Physics Research B 164-165 (2006) 108-138.
[23]   J. Ortner and I. M. Tkachenko; “Dielectric Permeability of Quasi-Two- Dimensional One-Component Plasmas”; Phys. Rev. A 46 (1992) 7882.
[24]  M. G. Krein and A. A. Nudel’man; “The Markov Moment Problem and Extremal Problems Nauka Moscow in Russian English translation: Translation Math. Monographs”; AMS 50 (1977).
[25]  G. F. Giuliani and G. Vignal; “Quantum Theory of the Electron Liquid”;Cambridge University Press, New York (2005).
[26]  N. Iwamoto; “Sum Rules and Static Local-Field Corrections of Electron Liquids in Two and Three Dimensions”; Phys. Rev. A 3 (1984) 5.
[27]   T. Vazifehshenas and S. Saberi-Pouya; “Local Field Correction Effect on Dicluster Stopping Power in a Strongly Coupled Two-Dimensional Electron Gas System”; Journal of Sciences Islamic Republic of Iran 24, No. 1 (2013) 81-85.