Study of optical absorption and dispersion in a semiconductor - metal nanoparticle hybrid system: Exciton-plasmon coupling

Document Type : Research Paper

Authors

1 Academic staff of Razi university

2 Department of Physics,Razi University of Kermanshah

3 M.Sc student/Razi University

Abstract

In this paper, optical properties of a hybrid system consisting of a semiconductor quantum dot placed in the vicinity of a metal (plasmonic) nanoparticle with spherical and ellipsoidal symmetry is investigated. An analytical expression for the absorption and dispersion using the density-matrix approach via semi-classical theory is derived and numerically discussed. In our numerical calculations, we have used Au and Ag metals, because these metals have predominately been the materials of choice for plasmonic applications around the optical frequencies. It is shown that the optical dispersion and absorption strongly depends on the particle size and shape, the quantum dot-nanoparticle distance (the semiconductor quantum dot-plasmonic nanoparticle center-to-center distance), and the dielectric constant of host matrix. It is important to note that dependences of optical properties of a hybrid system on changing and adjusting of the geometrical parameters of system can be used for optical sensing purposes and design of tunable bio-nanosensors.

Keywords


[1] A. Ridolfo, O. Di Stefano, N. Fina, R. Saijaj, and S. Savasta, “Quantum
Plasmonics with Quantum Dot-Metal Nanoparticle Molecules: Influence of the Fano
Effect on Photon Statistics”, Phys.Rev. Lett. 26 263601 (2010).
[2] R. D. Artuso and G. W. Bryant, “Optical Response of Strongly Coupled
Quantum Dot−Metal Nanoparticle Systems: Double Peaked Fano Structure and
Bistability”, Nano Lett. 8 2106 (2008).
[3] W. Zhang and A. O. Govorov, “Quantum theory of the nonlinear Fano effect in
hybrid metal-semiconductor nanostructures: The case of strong nonlinearity”, Phys.
Rev. B 84 081405(R) (2011).
[4] A. O. Govorov, “Semiconductor-metal nanoparticle molecules in a magnetic
field: Spin-plasmon and exciton-plasmon interactions”, Phys. Rev. B 82 155322
(2010).
[5] S. M. Sadeghi, L. Deng, and X.Li; W. P. Huang, “Plasmonic (thermal)
electromagnetically induced transparency in metallic nanoparticle-quantum dot
hybrid systems”, Nanotechnology 20 365401 (2009).
[6] W. Zhang, A. O. Govorov, and G. W. Bryant, “Semiconductor-Metal
Nanoparticle Molecules: Hybrid Excitons and the Nonlinear Fano Effect”, Phys.
Rev. Lett. 97(14) 146804 (2006).
[7] R. D. Artuso and G. W. Bryant, “Optical Response of Strongly Coupled
Quantum Dot−Metal Nanoparticle Systems: Double Peaked Fano Structure and
Bistability”, Nano Lett. 8(7) 2106 (2008).
[8] M. O. Scully and M. S. Zubairy, Quantum Optics (Cambridge: Cambridge
University Press, 1997).
[9] R. D. Artusoa and G. W. Bryant, “Hybrid Quantum Dot Metal Nanoparticle
Systems: Connecting the Dots”, Acta Physica Polonica A. 122 289 (2012).
[10] K. L. Kelly, E. Coronado, L. L. Zhao and G. C. Schatz, “The Optical
Properties of Metal Nanoparticles:  The Influence of Size, Shape, and Dielectric
Environment”, J. Phys. Chem. B 107 668 (2003).
[11] P. B. Johnson and R. W. Christy, “Optical Constants of the Noble Metals”,
Phys. Rev. B 6 4370 (1972).