مطالعۀ برهم‌کنش ملکول پیرول2ـ‌کربوکسیلیک اسید با نانوخوشۀ خالص بور نیترید و نشاندارشده با اتم پالادیم: بر اساس دیدگاه کوانتمی

نوع مقاله: مقاله پژوهشی

نویسندگان

1 دانشیار، گروه شیمی فیزیک، دانشکده علوم پایه، دانشگاه ملایر، ملایر، ایران.

2 کارشناس ارشد، گروه شیمی فیزیک، دانشکده علوم پایه، دانشگاه ملایر، ملایر، ایران

چکیده

هدف این تحقیقْ بررسی اثر جذب ملکول پیرول 2‌ـ‌کربوکسیلیک اسید(PCA) بر سطح نانوخوشۀ بور نیترید (B12N12 ) خالص و نشاندارشده با اتم پالادیم است. همۀ ساختارهای منتخب با استفاده از نظریۀ تابعی چگالی در سطح B3LYP/Lanl2DZ با استفاده از نرم‌افزار گوسین (09) بهینه شدند. با استفاده از ساختارهای بهینه پارامترهای فضایی (طول پیوند و زاویۀ پیوند)، اربیتال‌های هومو و لومو، طیف فروسرخ (IR)، پارامتر پوششی متقارن (CSI)، اربیتال‌های پیوندی طبیعی (NBO)، پارامترهای کوانتمی، پارامترهای نظریۀ اتم در ملکول (AIM) و نمودارهای پتانسیل الکترواستاتیک ملکولی (MEP) محاسبه شده و دربارۀ نتایج حاصل بحث شد است. نتایج محاسبات نشان داد که در نانوخوشۀ B12N12 نشاندارشده با اتم پالادیم، شکاف انرژی و پارامتر سختی نانوخوشه کاهش محسوسی یافته و رسانایی و فعالیت شیمیایی افزایش می­یابد. مقدار انرژی جذب و آنتالپیِ محاسبه‌شده برای تمام مدل‌ها منفی بوده و فرآیندهای جذبْ گرماده هستند و از نظر ترمودینامیکی مساعد است. نتایج MEP و NBO و CSI نشان داد که انتقال بار از سمت جذب‌شونده به سمت نانوخوشه صورت گرفته که این موضوع از نظر حملۀ گونه­های هسته‌دوست و الکترون‌دوست در فرآیند­های زیستی مهم است. نتایج نشان داد که نانوخوشۀ B12N12 خالص و نشاندارشده با اتم پالادیم می­تواند به عنوان گزینۀ مناسبی برای ساخت جاذب و شناساگر PCA استفاده شود.

کلیدواژه‌ها


عنوان مقاله [English]

Study of Interaction of Pyrrole 2-carboxylic Acid Molecule with Pristine and Palladium Functionalized Boron Nitride Nano Cage: Based on the Quantum Approach

نویسندگان [English]

  • Mahdi Rezaei-Sameti 1
  • Fatemeh Zamanina 2
1 Associate Professor, Department of Applied Chemistry, Faculty of Science, Malayer University, Malayer, Iran.
2 Master of Scince(MSc), Department of Applied Chemistry, Faculty of Science, Malayer University, Malayer, Iran
چکیده [English]

The aim of this project is to investigate the effects of 2-Pyrrole carboxylic acid molecule adsorption on the surface of pristine and Pd functionalized boron nitride nanocage (B12N12). All selected structures are optimized within the framework of DFT using B3LYP/Lanl2DZ. From optimized structures, the geometrical parameters (bond length, bond angle), HOMO and LUMO orbitals, infrared spectrum (IR), chemical shielding isotropic parameters (CSI), natural bonding orbital (NBO), quantum parameters, atom in molecule parameters (AIM) and molecular electrostatic potential (MEP) maps are calculated. The results indicate that in the functionalized B12N12 nanocage, the gap energy and global hardness of system decrease significantly from original state and so the conductivity and reactivity of BN nanocage increase.  The adsorption energy and enthalpy values of all adsorption models are negative and are exothermic and favorable in thermodynamic approach. The NBO, MEP and CSI parameters reveal that the electron charge transfer occurs from adsorbent toward nanocage, and this property is notable for electrophilic and nucleophilic attack in biological systems. The computational results demonstrate that the pristine and Pd functionalized BN nanocage can be used as a suitable candidate for fabricating detector and absorber for 2-Pyrrole carboxylic acid.

کلیدواژه‌ها [English]

  • Boron nitride nano cage
  • 2-Pyrrole carboxylic acid
  • Pd functionalized
  • Thermodynamic
  • Quantum
[1]       Makimoto T., Yamauchi Y., and Kumakura K., “High-power characteristics of GaN/InGaN double heterojunction bipolar transistors”, Applied physics letters 84. 1964‒1968. 2004.

[2]       Schmidt O. G.  and Ebrel K., “Thin solid films roll up into nanotubes”, Nature 410, 168‒175, 2001.

[3]       Chopra N. G., Luyken R. J., Cherrey K., Crespi V. H., Cohen M. L., Louie S. G. and Zettl A., “Boron-Nitride Nanotubes”, Science 269, 966-967,1995.

[4]       Han W. Q., Fan S.S., Li Q. Q., Hu Y.D., “Synthesis of Gallium Nitride Nanorods Through a Carbon Nanotube-Confined Reaction”, Science 277, 1287-1289, 1997.

[5]       Khaddeo K.R. , Srivastava A., and Kurchania R., “Electronic Properties of GaN Nanotube: Ab Initio Study” , Journal of Computational and Theoretical Nanoscience 10, 2066-2070, 2013.

[6]           Shakerzadeh E., Barazesh N., Talebi S.Z., “A comparative theoretical study on the structural, electronic and nonlinear optical features of B12N12 and Al12N12 nanoclusters with the groups III, IV and V dopants” , Superlattices and Microstructures 76, 264-276, 2014.

[7]           Seifert G., Fowler R., Mitchell D., Porezag D., Frauenheim T., “Boron-nitrogen analogues of the fullerenes: electronic and structural properties” , Chemical Physics Letters 268, 352-358, 1997.

[8]                D. Strout, “Structure and Stability of Boron Nitrides: Isomers of B12N12” , Journal of Physical Chemistry A 104, 3364-3366, 2000.

[9]           Strout D., “Structure and Stability of Boron Nitrides: The Crossover between Rings and Cages” , Journal of Physical Chemistry A 105, 261-263, 2001.

[10]        Cui X. Y., Yang B.S., Wu H.S., “Ab initio investigation of hydrogenation of (BN)16: A comparison with that of (BN)12” , Journal of Molecular Structure: THEOCHEM  941, 144-149, 2010.

[11]        Baei M. T., “B12N12 sodalite like cage as potential sensor for hydrogen cyanide”, Computational and Theoretical Chemistry 1024, 28‒33, 2013.

[12]        Oku T., Nishiwaki A., Narita I., “Formation and atomic structures of BnNn (n=24–60) clusters studied by mass spectrometry, high-resolution electron microscopy and molecular orbital calculations”, Physica B 351, 184-190, 2004.

[13]        Rezaei-Sameti M., “Effects of influence of carbon ring-doping on NMR parameters of boron phosphide nanotubes: A DFT study”, Arabian Journal of Chemistry, 8, 168-173, 2015.

[14]        Peyghan A., Bigdli-Tabar M., and Yourdkhani S., “A Theoretical Study of OH and OCH3 Free Radical Adsorption on a Nanosized Tube of BC2N”, Journal of Cluster Science, 24, 1011-1020, 2013.

[15]        Peralta-Inga Z., Lane P., Murray J.S., Boyd S., Grice M.E., O'Connor C. J., and Politzer P., “Characterization of Surface Electrostatic Potentials of some (5,5) and (n,1) Carbon and Boron/Nitrogen Model Nanotubes”, Nano Letter, 3, 21-28, 2003.

[16]        Bulat F. A., Burgess J. S., Matis B. R., Baldwin J. W., Macaveiu L., Murray J. S., and Politzer P., “Hydrogenation and Fluorination of Graphene Models: Analysis via the Average Local Ionization Energy”, Journal of Physical Chemistry, 116 (33), 8644-8652, 2012.

[17]        Ahmadi A., Beheshtian J., Hadipour N. L., “Interaction of NH3 with aluminum nitride nanotube: Electrostatic vs. covalent”, Physica E, 43, 1717-1719, 2011.

[18]        Beheshtian J., Kamfiroozi M., Bagheri Z., Peyghan A. A., “B12N12 Nano-cage as Potential Sensor for NO2 Detection”, Chinese Journal of Chemical Physics, 25, 60-69, 2012.

[19]        Baei M. T., Bagheri Z., Peyghan A. A., “A DFT study on CO2 interaction with a BN nano-cage”, Bulletin of the Korean Chemical Society, 33, 3338-3342, 2012.

[20]        Beheshtian J., Peyghan A. A., Bagheri Z., Kamfiroozi M., “Interaction of small molecules (NO, H2, N2, and CH4) with BN nanocluster surface”, Structural Chemistry, 23, 1567-1572, 2012.

[21]        Shokuhi Rad A. and Ayub K., “O3 and SO2 sensing concept on extended surface of B12N12 nanocages modified by Nickel decoration: a comprehensive DFT study”, Solid State Science, 69, 22-30, 2017.

[22]        Beheshtian J., Tabar M. B., Bagheri Z., “Exohedral and endohedral adsorption of alkaline earth cations in BN nanocluster”, Journal of Molecular Modeling, 19, 1445-1450, 2013.

[23]        Beheshtian J., Kamfiroozi M., Bagheri Z., Peyghan A. A., “B12N12 Nano-cage as Potential Sensor for NO2 Detection”, Chinese Journal of Chemical Physics, 25, 60-68, 2012.

[24]             Beheshtian J., Ahmadi Peyghan A., Bagheri Z., “Selective function of Al12N12 nano-cage towards NO and CO molecules”, Computational Materials Science, 62, 71-74, 2012.

[25]        Frisch M. J.  et al., “GAUSSIAN 09”, Gaussian Inc. (Pittsburgh, PA)2009.

[26]             Rezaei-Sameti M., Hadian Kh., “The first-principle study of N2O gas interaction on the surface of pristine and Si-, Ga-, SiGa-doped of armchair boron phosphide nanotube using DFT method”, Iranian Journal of Physics Research, 16, 3-12, 2016.

[27]        Rezaei-Sameti M., Zanganeh F., “A computational study of adsorption H2S gas on the surface of the pristine, Al&P-doped armchair and zigzag BNNTs”, Journal of Sulfur Chemistry, 38, 384-400, 2017.

[28]        Rezaei‑Sameti M., Zarei P., “NBO, AIM, HOMO–LUMO and thermodynamic investigation of the nitrate ion adsorption on the surface of pristine, Al and Ga doped BNNTs: A DFT study”, Adsorption, 24 (8), 757-767, 2018.

[29]        Rezaei-Sameti M., Amirian B., “A Quantum, NBO, RDG study of interaction cadmium ion with the pristine, C, P and C&P doped (4, 4) armchair boron nitride nanotube (BNNTs)”, Asian Journal of Nano science Mater, 1 (4), 262-270, 2018.

[30]        Baei M. T. , Ramezani Taghartapeh M., Tazikeh Lemeski E., Soltani A., “A computational study of adenine, uracil, and cytosine adsorption upon AlN and BN nano-cages”, Physica B, 444, 6-13, 2014.

[31]        Beheshtian J., Kamfiroozi M., Bagheri Z., Ahmadi A., “Computational study of CO and NO adsorption on magnesium oxide nanotubes”, Physica E: Low-dimensional Systems and Nanostructures, 44, 546-549, 2011.

[32]        Politzer P., Lane P., Murray J. S., Concha M. C., “Comparative analysis of surface electrostatic potentials of carbon, boron/nitrogen and carbon/boron/nitrogen model nanotubes”, Journal of Molecular Modeling, 11, 1-7, 2005.

[33]        Parr R. G., Szentpaly L. V., and Liu S., “Electrophilicity Index”, Journal of American Chemical society, 121, 1922-1924, 1999.

[34]        Murray J. S. and Sen K., Molecular electrostatic potentials: concepts and applications, (Publisher: Elsevier Science) 1996.

[35]        Bader R. W.F., Atoms in molecules: a quantum theory, (Oxford University Press, Oxford) 1994.

[36]        Bader R. F. W., “Principle of stationary action and the definition of a proper open system”, Physical Review B, 49, 13348-13356, 1994.