مقاله پژوهشی:بررسی خواص اپتیکی اکسید ایتریم با استفاده از نظریۀ تابعی چگالی

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشیار، گروه فیزیک، دانشکدۀ علوم، دانشگاه شهید چمران اهواز، اهواز، ایران

2 دانشجوی کارشناسی ارشد، گروه فیزیک، دانشکدۀ علوم، دانشگاه شهید چمران اهواز، اهواز، ایران

چکیده

در این مقاله برخی ویژگی‌های اپتیکی از قبیل تابع اتلاف انرژی الکترون وتابع دی‌الکتریک بلور ترکیب Y2O3 بررسی و محاسبه شده است. محاسبات با استفاده از روش امواج تخت بهبودیافتۀ خطی با پتانسیل کامل(FP-LAPW) در چارچوب نظریۀ تابعی چگالی و با استفاده از بستۀ محاسباتی Wien2k صورت گرفته است. با توجه به منحنی تابع اتلاف انرژی (EELS)، انرژی پلاسمون در حدود eV13 محاسبه شد. ضریب شکست ایستایی 1.92 به دست آمد، که سازگاری خوبی با نتایج دیگران دارد. علاوه بر این، نمودار رسانندگی اپتیکی نشان داد به دلیل وجود شکاف نواری، در انرژی 4 الکترون‌ولت توانایی برانگیختگی به تراز رسانش را ندارد.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Investigation of the Optical Properties of Yttrium Oxide by DFT

نویسندگان [English]

  • Hamdollah Salehi 1
  • Hojatollah Badehian 2
1 Associate Professor, Department of Physics, Faculty of Science, Shahid Chamran University of Ahvaz, Ahvaz, Iran
2 MSc in Physics, Department of Physics, Faculty of Science, Shahid Chamran University of Ahvaz, Ahvaz, Iran
چکیده [English]

Optical properties of the yttrium oxide, such as the dielectric function, refractive index and electron energy loss spectroscopy (EELS), are studied. Calculations are done by full-potential augmented plane waves (FP-LAPW) in density functional theory (DFT) framework by Wien2k package. According to EELS curve, the plasmon energy is estimated about 13eV. The obtained static refractive index is 1.92. In addition, optical conductivity diagrams show that due to the band gap at 4 eV, it is not able to excite the conduction band. The results are in good agreement with that of other theoretical and experimental works.

کلیدواژه‌ها [English]

  • Refractive Index
  • DFT
  • Electron Energy Loss Spectroscopy
  • Y2O3
[1] Jollet F., Noguera C., Thromat N., Gautier M. and Duraud J. -P., Phys. Rev. B 42 (12), 7587-7595(1990).
[2] Zheng J.X., Ceder G., Masixch T., Chim W.K. and Choi W.K.  “Native point defects in yttria as a high-dielectric-constant gate oxide material: a first-principle study”, Phys. Rev.B 73, 104101 (2006).
[3] Jollet F., Noguera C., Gautier M., Thromat N., and Duraud J.P., Ceram. Soc., 74(2), 358-364 (1991).
[4] Mueller D. R., Ederer D. L., VanEk J., L.Obrien W., Dong Q. Y., Jia J. J., and Callcott T. A., Phys. Rev. B 54(21), 15034-15039(1996).
[5] Ching W.Y., Ouyang L. and Xu Y.N., “Electronic and optical properties of Y2SiO5 and Y2Si2O7 with comparisons to alfa-SiO2 and Y2O3”, Phys. Rev. B 67 245108-8 (2003).
[6] Xu Yong-Nian, Gu Zhong-quan, and Ching W. Y., Electronic, structural, and optical properties of crystalline yttria, Phys. Rev. B 56 14993(1997).
[7] Ramzan M., Li Y., Chimata R. and Ahuja R., “Electronic, mechanical and optical properties of Y2O3 with hybrid density functional (HSE06)”, Computational Materials Science 71 19-24 (2013).
[8] Badehian H., Salehi H. and Ghoohestani M., “First-principles study of elastic, structural, electronic, thermodynamical and optical properties of yttria (Y2O3) ceramic in cubic phase”, Journal of the American Ceramic Society, 1-9 (2013).
[9] Ahuja B. L., Sharma S., Heda N. L., Tiwari S., Kumar K., Meena B. S.  and Bhatt S., “Electronic and optical properties of ceramic Sc2O3 and Y2O3: Compton spectroscopy and first principles calculations”, Journal of Physics and Chemistry of Solids 92 53-63 (2016).
[10] Zhu P.,Wang W. et al., “Optical properties ofEu+3 –Doped Y2O3 Nanotubes and Nanosheets synthesized by hydrothermal method”, IEEE Photonics Journal 10 4500210 (2018).
[11] Saddeek Y. B., Aly K., Abbady Gh., Afify N., Shaaban K. H. S. and Dahshan A., “Optical and structural evaluation of bismuth alumina-borate glasses doped with different amounts of (Y2O3)”, Journal of Non-Crystalline Solids 454 13-18 (2016).
[12] Xiaoyi S.and Yuchun Z., “Preparation and optical properties of Y2O3 /SiO2 Powder”, Rare Metals 30 33-38 (2011).
[13] Tessari G., Bettinelli M., Speghini A. et al., “Synthesis and optical properties of nanosized powders: lanthanide-doped Y2O3”, Applied Surface Science, 144-145, 686-689 (1999).
[14] Blaha P., Schwarz K., Wien2k, Vienna university of technology, Austria (2010).
[15] Toll J. S., “Causality and the Dispersion Relation: Logical Foundations”, Phys. Rev. 104 1760(1956).
[16] Landau L. D., Lifshitz E. M., Electrodynamics in Continuous Media, Pergamon Press, Oxford, (1960).
[17] Kramers H. A., Collected Science Papers, North Holland, Amsterdam (1956).
[18] Puschnig P. and Ambrosch-Draxl C., “Optical absorption spectra of semiconductors and insulators including electron-hole correlations: An ab-initio study within the LAPW method”, Phys. Rev. B 66 165105-1-9(2002).
[19] Yu P. and Cardona M., Contains problems to whose solution the student is carefully guided; Physical and intuitive approach enhance understanding; Includes extensive tables of material properties”, Fundamentals of Semiconductors Physics and Materials Properties, Springer-Verlag, Berlin (1999).
[20] Tomiki T., Tamashiro J., Tanahara Y., Yamada A., Fukutani H., Miyahara T., Kato H., Shin S., and Ishigame M., J. Vac. Sci. Technol. B 55 4543(1986).
[21] Thromat N., Noguera C., Gautier M., Jollet F., and Duraud J. P., “Electronic structure and atomic arrangement around Zr substituted for Y in Y2O3”, Phys. Rev. B 44 7904-7911 (1991).