تأثیر قطبش نور فرودی و پارامترهای ناخالصی گاوسی در ضریب تولید هماهنگ دوم نقطۀ کوانتمی

نوع مقاله: مقاله پژوهشی

نویسنده

استادیار دانشکدۀ علوم پایه، دانشگاه صنعتی سهند، تبریز، ایران

چکیده

در این مقاله، تأثیر پارامترهای ناخالصی و همچنین نوع قطبش نور فرودی در نقطۀ کوانتمی قرص‌شکل در ضریب تولید هماهنگ دوم و با در نظر گرفتن جفت­شدگی اسپین‌ـ‌مدار راشبا مطالعه شده است. پتانسیل ناخالصی، به صورت گاوسی فرض شده و پارامترهای مؤثر آن عبارتند از: قدرت پتانسیل، طول میرایی، نوع ناخالصی و مکان آن در نقطۀ کوانتمی. محاسبات در قالب تقریب جرم مؤثر انجام شده­اند. نتایج نشان دادند که حضور ناخالصی سبب ایجاد تغییراتی در ضریب تولید هماهنگ دوم می­شود و با تغییر دادن پارامترهای ناخالصی، می­توان مقدار ضریب تولید هماهنگ دوم را کنترل کرد. برای مثال، در هر دو نوع ناخالصی با افزایش فاصلۀ ناخالصی از مرکز نقطۀ کوانتمی، بیشینۀ مقدار این ضریب به سمت انرژی‌های بیشتر جابه‌جا می­شود همچنین نقش قطبش نور فرودی در مقدار این ضریب نیز بررسی شده و نشان داده شد که نوع قطبش تأثیری در مکان بیشینۀ ضریب ندارد و فقط مقدار آن را تحت تأثیر قرار می‌­دهد.

کلیدواژه‌ها


عنوان مقاله [English]

Effect of the Incident Light Polarization and Gaussian Impurity Parameters on the Second Harmonic Generation of Quantum Dot

نویسنده [English]

  • Parinaz Hosseinpour
Assistant Professor, Department of Physics, Faculty of Sciences, Sahand University of Technology
چکیده [English]

The influence of impurity parameters as well as the type of incident light polarization at the disk-like quantum dot with including the Rashba spin-orbit coupling on the second harmonic generation are studied. The impurity potential is assumed to be Gaussian and its effective parameters are: potential strength, decay length, impurity type and its location at the quantum dot. The calculations are performed in the framework of the effective mass approximation. The results showed that the presence of impurity leads to changes in the second harmonic generation, and the value of the second harmonic generation can be controlled by changing the impurity parameters. For example, in both types of the impurities, by increasing the impurity distance from dot center, the maximum value of this coefficient shifts to higher energies. The role of light polarization in this coefficient is also investigated and it was shown that the type of light polarization has no effect on the peak position of the second harmonic generation and only affects its peak value.

کلیدواژه‌ها [English]

  • Quantum dot
  • second harmonic generation
  • Gaussian impurity
  • incident light polarization
  • Rashba spin-orbit interaction
[1] Karabulut I., and Baskoutas S., “Linear and nonlinear optical absorption coefficients and refractive index changes in spherical quantum dots: effects of impurities, electric field, size, and optical intensity”, Applied Physics, 103, 073512, 2008.

[2] Sachrajda A. S., Feng Y., Taylor R. P., Kirczenow G., Henning L., Wang J., Zawadzki P., and Coleridge P. T., “Magneto-conductance of a nanoscale anti-dot”, Physical Review B, 50, 10856, 1994.

[3] Margulis V., and Shorokhov A. V., “Hybrid–impurity resonances in anisotropic quantum dots”, Physica E, 41, 483, 2009.

[4] Jovanovic V. D., Indjin D., Vukmirovic N., Lkonic Z., Harrison P., Linfield E. H., Page H., Marcadet X., Sirtori C., Worall C., Beere H.A., and Ritchie D.A., “Mechanisms of dynamic range limitations in GaAs∕AlGaAs quantum-cascade lasers: Influence of injector doping”, Applied Physics Letter, 86, 211117, 2005.

[5] Mujagic E., Austerer M., Schartner S., Nobile M., Hoffmann L. K., Schrenk W., Strasser G., Semtsiv M. P., Bayrakli I., Wienold M., and Masselink W. T., “Impact of doping on the performance of short-wavelength InP-based quantum-cascade lasers”, Applied Physics, 103, 033104, 2008.

[6] Bolcatto P. G., and Proetto C. R., “Shape and dielectric mismatch effects in semiconductor quantum dots”, Physical Review B, 59, 12487, 1999.

[7] Kwasniowski A., and Adamowski J., “Effect of confinement potential shape on exchange interaction in coupled quantum dots”, Journal of Physics Condensed Matter, 20, 215208, 2008.

[8] Baskoutas S., Paspalakis E., and Terzis A. F., “Electronic structure and nonlinear optical rectification in a quantum dot: effects of impurities and external electric field”, Journal of Physics Condensed Matter, 19, 395024, 2007.

[9] Cakir B., Yakar Y., Ozmen A., Sezer M. O., and Sahin M., “Linear and nonlinear optical absorption coefficients and binding energy of a spherical quantum dot”, Supperlattices and Microstructure, 47, 556, 2010.

[10] Shojaei S., and Soltani Vala A., “Nonlinear optical rectification of hydrogenic impurity in a disk-like parabolic quantum dot: the role of applied magnetic field”, Physica E, 70, 108, 2015.

[11] Yuan J.H., Zhang Y., Guo X., Zhang J., and Mo H., “The low-lying states and optical absorption properties of a hydrogenic impurity in a parabolic quantum dot modulation by applied electric field”, Physica E, 68, 232, 2015.

[12] Chen T., Xie W., and Liang S., “Optical and electronic properties of a two-dimensional quantum dot with an impurity”, Journal of Luminescence,139, 64, 2013.

[13] Liang S., Xie W., Li X., and Shen H., “Photoionization and binding energy of a donor impurity in a quantum dot under an electric field: Effects of the hydrostatic pressure and temperature”, Superlattices and Microstructures, 49, 623, 2011.

[14] Sugirtham L.C., Peter A.J., and Lee C.W., “Electric field-induced nonlinear optical properties of a hydrogenic impurity in a GaAs/GaAlAs quantum dot: effects of spin–orbit interactions”, Phase Transitions, 88, 407, 2015.

[15] Raigoza N., Morales A. L., Montes A., Porras-Montenegro N., and Duque C. A., “Stress effects on shallow-donor impurity states in symmetrical GaAs/AlxGa1-xAs double quantum wells”, Physical Review B, 69, 045323, 2004.

[16] Ashoori R. C., “Electrons in artificial atoms”, Nature, 379, 413, 1996.

[17] Kastner M. A., “Artificial Atoms”,Physics Today, 46, 24, 1993.

[18]Shao S., Guo K. X., Zhang Z. H., Li N., and Peng C., “Studies on the second-harmonic generations in cubical quantum dots with applied electric field”,Physica B, 406, 393, 2011.

[19] Martynenko I. V., Litvin A. P., Milton F. P., Baranov A. V., Fedorov A. V., and Gunko Y. K., “Application of Semiconductor Quantum Dots in Bioimaging and Biosensing”, Journal of Materials ChemistryB, 5,6701, 2017.

[20] Reimann S. M., and Manninen M., “Electronic structure of quantum dots”, Reviews of Modern Physics, 74, 1283, 2002.

[21] Karabulut I., and Baskoutas S., “Linear and nonlinear optical absorption coefficients and refractive index changes in spherical quantum dots: Effects of impurities, electric field, size, and optical intensity”, Journal of Applied Physics, 103, 073512, 2008.

[22] Kirak M., Yilmaz S., Sahin M., and Gencaslan M., “The electric field effects on the binding energies and the nonlinear optical properties of a donor impurity in a spherical quantum dot”, Journal of Applied Physics, 109, 094309, 2011.

[23] M-Ramos M. E., Duque C. A., Kasapoglu E., Sari H., and Sokmen I., “Linear and nonlinear optical properties in a semiconductor quantum well under intense laser radiation: Effects of applied electromagnetic fields”, Journal of Luminance, 132, 901, 2012.

[24] Yildirim H., and Tomak M., “Third‐harmonic generation in a quantum well with adjustable asymmetry under an electric field”, Physics Status SolidiB, 243, 4057, 2006.

[25] Khordad R., and Mirhosseini B., “Optical properties of GaAs/Ga1-xAlxAs ridge quantum wire: Third-harmonic generation”, Optical Communication, 285, 1233, 2012.

[26] Qiucheng Y., Kangxian G., Meilinm H., Zhongmin Z., Keyin L., and Dongfeng L., “Study on the optical rectification and second-harmonic generation with position-dependent mass in a quantum well”, Journal of Physics and Chemistry of Solids, 119, 50, 2018.

[27] Restrepo R. L., Kasapoglu E., Sakiroglu S., Ungan F., Morales A. L., and Duque C. A., “Second and third harmonic generation associated to infrared transitions in a Morse quantum well under applied electric and magnetic fields”, Infrared Physics and Technology, 85, 147, 2017.

[28]Martínez-Orozcoa J. C., Rojas-Brisenoa J. G., Rodriguez-Magdalenoa K. A., Rodriguez Vargasa I., Mora-Ramosb M. E., Restrepoc R. L., Ungand F., Kasapoglue E., and Duque C. A., “Effect of the magnetic field on the nonlinear optical rectification and second and third harmonic generation in double δ-doped GaAs quantum wells”, Physica B, 525, 30, 2017.

[29] Rashba E. I., “Properties of semiconductors with an extremum loop. 1. Cyclotron and combinational resonance in a magnetic field perpendicular to the plane of the loop”,Sov. Physics Solid State, 2, 1109, 1960.

[30] Kumar Datta N., and Ghosh M., “Oscillatory impurity potential induced dynamics of doped quantum dots: Analysis based on coupled influence of impurity coordinate and impurity influenced domain”, Chemical Physics, 372, 82, 2010.

[31] Karabulut I., Atav U., and Safak H., “Comment on “Electric field effect on the second-order nonlinear optical properties of parabolic and semi-parabolic quantum wells”, Physical Review B, 72, 207301, 2005.

[32] Wangjian Z., “A study of electric-field-induced second-harmonic generation in asymmetrical Gaussian potential quantum wells”, Physica B, 454, 50, 2014.

[33] Landolt-Bornstein, New Series, edited by O. Madelung, M. Schultz, and H. Weiss (Springer-Verlag, Berlin, 1982), Vol. 17a, b, Group III.

[34] Seilmeier A., Hubner H. J., Abstreiter G., Weimann G., Schlapp W., “Intersubband relaxation in GaAs-AlxGa1-xAs quantum well structures observed directly by an infrared bleaching technique”, Phys. Rev. Lett. 59 1345, 1987.

[35] Nitta J., Akazaki T., Takayanagi H. and Enoki T., “Gate Control of Spin-Orbit Interaction in an Inverted In0.53Ga0.47As/In0.52Al0.48As Heterostructure”, Phys. Rev. Lett. 78, 1335, 1997.