مقاله پژوهشی:طیف نگاری نور صوتی NO_2-N_2 و NO_2-Ar با استفاده از دو منبع لیزری

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشیار، گروه فیزیک، دانشگاه زنجان

2 دانش آموخته دکترا فیزیک، دانشگاه اراک

3 استاد، گروه فیزیک، دانشگاه امیرکبیر

4 دانشیار، گروه مهندسی برق و الکترونیک، دانشگاه مالک اشتر تهران

چکیده

به منظور طیف سنجی فوتو آکوستیک یک سلول استوانه ای طراحی و ساخته شده است. ضریب کیفیت Q ، تلفات گرمایی ، وشکسانی وبسامد تشدیدی این سلول برای هر یک از گازهای بافر محاسبه شده است. گاز نمونه    همراه با بافر آرگون در این سلول تزریق و کمینه غلظتppm  5/47  در فشار mbar700 آشکار سازی شده است. سلول  توسط لیزر پیوسته کار  روشن  شده و نور خروجی از لیزر توسط برشگر تپی می شود. با تعویض گاز بافر با ازت در همان فشار کمینه غلظت گاز نمونه ppm 2/62 به دست می آید. همچنین از یک لیزر پیوسته کار نئودیوم - یاگ تحت همان شرایط آزمایشی استفاده و برای گازبافر  آرگون و ازت  کمینه غلظت  به ترتیب برابرppm  8/32 وppm  2/16 به دست می آید. برای چهار آزمایش انجام شده ، تغییرات دامنه سیگنال فوتو آکوستیکی بر حسب فشار ترسیم و نشان داده می شود که شیب نمودار هنگام استفاده از لیزر نئودیوم - یاگ و گاز ازت تقریبا 2 برابر  موارد دیگر است.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Photo Acoustic Spectroscopy of 〖NO〗_2-N_2 and 〖NO〗_2-Ar Using Two Independent Sources

نویسندگان [English]

  • Hamid Nadjari 1
  • Narges Khodabakhshi 2
  • Parviz Parvin 3
  • Mohammad Amin Bassam 4
  • Yousof Ali Abedini 1
1 Associate Professor, Department of Physics, Zanjan University, Zanjan, Iran
2 PhD in Physics, Department of Physics,Arak University, Arak, Iran.
3 Professor, Physics Department, Amirkabir University of Technology, Tehran, Iran.
4 Associate Professor, Electric & Electronics Department, Malek Ashtar University, Tehran, Iran
چکیده [English]

A cylindrical PA cell is designed and constructed; also the Q factor, thermal and viscous loss depths and resonance frequencies are calculated for each buffer gas. The NO2 sample gas and Ar buffer are inserted to the cell and minimum concentration is detected 47.5 ppm at 700 mbar. In this experiment the cell is illuminated with a chopped CW CO2 laser beam. Then the buffer gas is replaced by N2 in the same pressure and minimum detectable concentration is obtained to be 62.2 ppm. The output of another CW Nd:YAG laser after passing through the chopper illuminates the cell in the same experimental condition giving 32.8 and 16.2 ppm minimum detectable concentration for Ar and N2 buffers, respectively. For these four experiments, the magnitude of PA signals are plotted against pressure and it is shown that the slope of the graph when using Nd:YAG laser and N2 buffer gas is approximately 2 times greater than the others.

کلیدواژه‌ها [English]

  • Photo Acoustic
  • NO2-N2
  • Cylindrical Cell
  • Viscous Loss
  • Minimum Concentration
1. Database for NO2 and it’s spectrum  ; www.spectral.com   http://www.cfa.harvard.edu/HITRAN/
2. Saarela J. , Sorvajarvi T. , Laurila T. , Toivonen J. ;  “Phase-sensitive method for background-compensated photoacoustic detection of NO2 using high-power LEDs” ; Optics Express 19 (2011)S4 , A727-A732.  doi:  10.1364/OE.19.00A725
3. Slezak V. ; “High precision pulsed photoacoustic spectroscopy in NO2-N2” ; Appl. Phys. B. 73 (2001) 751-755. doi: 10.1007/s003400100686
4. Dibaee B., Parvin P., Bavali A., DaneshAfrooz V., Mohebifar M. R.; “ Effect of colliding partners on the performance of SF6 and SO2 trace measurements in photoacoustic spectroscopy ”; Appl. Opt. 54(2015) 30, 8971. doi: 10.1364/AO.54.008971
5. Mohebbifar M.R., Khalilzadeh J. , Dibaee B. , Parvin P. ; “Effect of buffer gases on the performance of SO2 trace measurement based on photoacoustic spectroscopy”; Infrared Physics & Technology 65 (2014) 61–66. doi:10.1016/j.infrared.2014.03.014
6. Slezaka V., Santiagob G.,  Peuriot A. L.; “Photoacoustic detection of NO traces with CW and pulsed green lasers” ; Optics and Lasers in Engineering 40 (2003) 33–41. doi: 10.1016/S0143-8166(02)00062-3
7. Bartlome R., Kaucikas M., Sigrist M. W. ;“Modulated resonant versus pulsed resonantphotoacoustics in trace gas detection”, Appl. Phys B, 96(2009)561-566.doi: 10.1007/s00340-009-3572-2
8. Zharov V. P., Letokhov V.S.; “ Laser optoacoustic spectroscopy”; Tamir T, editor. Springer Series in Optical Sciences vol. 37. Berlin: Springer, 1986
9. Rosenwaig A., “Photoacoustic and Photoacoustic Spectroscopy” ; Robert E.Krieger Publishing  Company, 1980.
10. Rosencwaig A. , Gersho A.; “Theory of the photoacoustic effect with solids”; J. Appl. Phys. A (1976)47-64 . doi: 10.1063/1.322296
11. Besson J. P. , Schlitz S., Thévenaz L., “ Multi-gas sensing based on photoacoustic spectroscopy using tunable laser diode”; Spectrochimica Acta , A 60 (2004) 3449–3456.  doi:10.1016/j.saa.2003.11.046
12. Dumitras D. C., Dutu D. C., Matel C., Maguceanu A. M., Petrus M., Popa C., “ Laser Photoacoustic Spectroscopy :Principle,instrumentation & characterization” ; J.  Optoelec.  Adv.  Mat. 9(2007) 12,3655-3701.
13. Dumitras D.C., Banita S., Bratu A.M., Cernat R., Dutu D.C.A., Matei C., Patachia M., Petrus M., Popa C.; “Ultrasensitive CO2 laser photoacoustic system”; Infrared Physics & Technology 53 (2010) 308–314,doi:10.1016/j.infrared.2010.05.001
14. Miklos A. , Hess P., Bozoki Z., “Application of  acoustic resonator in Photoacoustic trace gas analysis & Metralogy”, Rev. Sci. Instrum., 72(2001)4, 1937 ;  https://doi.org/10.1063/1.1353198.
15. Rabasovic M.D., Nikolic J.D., Markushev D.D., Jovanovic –Kurepa J.  ; “Pulsed photoacoustic gas cell design for low pressure studies”; Optical Materials 30 (2008) 1197–1200 ; doi:10.1016/j.optmat.2007.05.048
16. May E. F., Berg R. F., Moldover M . R., “Reference Viscosities of H2, CH4, Ar, and Xe at Low Densities”, Int. J. thermophys. 28( 2007) 1085 .