مقاله ترویجی: مروری بر خطاهای احتمالی در فرآیند تحویل دُز پرتودرمانی به روش شدّت تعدیل‌شده

نوع مقاله : ترویجی

نویسندگان

1 دانشجوی دکترا، گروه فیزیک، دانشکدۀ علوم، دانشگاه فردوسی مشهد، مشهد، خراسان‌رضوی، ایران

2 دانشیار، گروه فیزیک، دانشکدۀ علوم، دانشگاه فردوسی مشهد، مشهد، خراسان‌رضوی، ایران

3 پژوهشگر، مرکز تحقیقات، بیمارستان انکولوژی ناظران، مشهد، ایران؛ پژوهشگر، واحد آموزش و پژوهش، مرکز رادیوتراپی و انکولوژی رضا، مشهد، ایران

چکیده

پرتودرمانی با شدت تعدیل‌شده، به‌عنوان یکی از فناوری‌های نوین پرتودرمانی خارجی در مراکز درمانی مختلف استفاده شده است. لیکن، با وجود مزیت‌های این روش در مقایسه با روش‌های پیشین پرتودرمانی خارجی و استفاده از فناوری‌های جدید در سیستم طراحی درمان و تحویل دُز، همچنان خطاهای پرتودرمانی مانعی برای دستیابی به توزیع دز مطلوب در بیماران محسوب می‌شوند. در این نوشتار، خطاهای مؤثر در پرتودرمانی با شدت تعدیل‌شده و حساسیت روش‌های تضمینِ کیفیت مختلف در تشخیص و طبقه‌بندی آن‌ها بررسی شده است. بر اساس این مطالعات، علاوه بر اهمیت خطاهای انسانی در تحویل باریکۀ تابشی و مکان‌دهی صحیح بیماران، خطاهای ابزار‌های اصلاح باریکه، یکی دیگر از مؤثرترین منابع عدم‌قطعیت تحویل باریکۀ تابشی است، به‌طوری‌که در حدود 35%ـ50% از خطاهای پرتودرمانی را شامل می‌شوند. به همین‌منظور، روش‌های تضمین کیفیت متنوعی، مانند آشکارسازهای دیودی، فیلم‌ها، تصاویر پرتال الکترونیکی، فایل‌های لاگ و هوش مصنوعی در بررسی خطاهای مکانی کلیماتورهای چندتیغه‌ای استفاده شده است. از طرف دیگر، برای کاهش عدم‌قطعیت در محاسبۀ دز پرتودرمانی، مدل‌سازی کلیماتورهای چندتیغه‌ای و تخت‌درمان در سیستم طراحی‌درمان نیز باید مدنظر قرار گیرد. بر اساس مطالعات متعدد، تضعیف باریکۀ تابشی در تخت‌های درمان‌ مختلف در زاویۀ گانتری صفر درجه در محدودۀ بزرگ 4% تا 9% بوده است. این در حالی ا‌ست که در پرتودرمانی با شدت تعدیل‌شده، اغلب از باریکه‌های مایل خلفی استفاده می‌شود. بنابراین، با شناخت هوشمندانۀ عدم‌قطعیت‌های موجود در فرایند تحویل باریکۀ تابشی و روش‌های تضمین کیفیت بیمار، توانایی ما در پیشگیری از حوادث احتمالی و درمان مطلوب بیماران افزایش می‌یابد.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Review Paper: A Review Study of Possible Errors in the Process of Dose Delivery of Intensity Modulated Radiation Therapy (IMRT)

نویسندگان [English]

  • Vida Khodabandeh Baygi 1
  • Laleh Rafat Motavalli 2
  • Elieh Hoseinian Azghadi 3
1 Ph. D. Student, Physics Department, Faculty of Sciences, Ferdowsi University of Mashhad, Mashhad, Iran
2 Associate Professor, Physics Department, Faculty of Sciences, Ferdowsi University of Mashhad, Mashhad, Iran
3 Researcher, Research Center, Nazeran Oncology Hospital, Mashhad, Iran
چکیده [English]

Intensity Modulated Radiation Therapy (IMRT) is one of the modern technologies of external radiotherapy, which underwent widespread clinical adoption in medical centers. Modern radiotherapy makes use of new technologies in design, treatment, and delivery systems. However, despite the advantages of IMRT compared to previous methods, radiotherapy errors are still an obstacle to achieving the desired dose distribution. In this paper, effective errors of the IMRT technique, together with the sensitivity of different quality assurance (QA) procedures in diagnosis are investigated and classified. According to these studies, in addition to the importance of human errors in delivery and patient positioning, beam correction device errors are other most effective sources of delivery errors, responsible for 35% to 50% of radiotherapy uncertainties. Thus, IMRT QA methods such as diode detectors, films, electronic portal images, log files, and artificial intelligence methods have been used extensively to investigate the MLC leaf positioning errors. Moreover, uncertainties of treatment couch design and MLC modeling in TPS should not be underestimated, since numerous studies have demonstrated that various couch tops include non-negligible beam attenuation, ranging from 4% to 9% for a gantry angle of 0. Whereas posterior oblique beams are often used in the IMRT process. This article aims to highlight the importance of recognition and correction of radiotherapy uncertainties and reduce possible accidents during an IMRT process by precisely knowing various IMRT QA procedures.

کلیدواژه‌ها [English]

  • Intensity Modulated Radiation Therapy (IMRT)
  • Radiotherapy Errors
  • Quality Assurance (QA)
  • Gamma Index
[1] Ma, C. and Wang, R., The structural similarity index for IMRT quality assurance: radiomics‐based error classification, Medical Physics, 2020.
[2]    Fraass, B.A., Errors in radiotherapy: motivation for development of new radiotherapy quality assurance paradigms, International Journal of Radiation Oncology Biology Physics, 71(1), S162-S165, 2008.
[3]    Yu, C.-Y., et al., Impact of radiation attenuation by a carbon fiber couch on patient dose verification, Scientific Reports 7(1),1-8, 2017.
[4]    Margalit, D.N., et al., Technological advancements and error rates in radiation therapy delivery. International Journal of Radiation Oncology Biology Physics, 81(4), e673-e679, 2011.
[5]    Huang, M., et al., Preliminary study of clinical application on IMRT three‐dimensional dose verification‐based EPID system, Journal of Applied Clinical Medical Physics, 18(4), 97-105, 2017.
[6]    Tatli, H., et al., Development of independent MU/treatment time verification algorithm for non-IMRT treatment planning: A clinical experience in AIP Conference Proceedings, AIP Publishing LLC, 2018.
[7]    Keeling, V.P., S. Ahmad, and H. Jin., A comprehensive comparison study of three different planar IMRT QA techniques using MapCHECK 2, Journal of applied clinical medical physics, 14(6), 222-233, 2013.
[8]    Potter, N.J., et al., Error detection and classification in patient‐specific IMRT QA with dual neural networks, Medical Physics, 47(10), 4711-4720, 2020.
[9]    Hussein, M., et al., A comparison of the gamma index analysis in various commercial IMRT/VMAT QA systems, Radiotherapy and Oncology, 109(3),370-376, 2013.
[10] Lam, D., et al., Predicting gamma passing rates for portal dosimetry‐based IMRT QA using machine learning, Medical physics, 46(10), 4666-4675, 2019.
[11]Miften, M., et al., Tolerance limits and methodologies for IMRT measurement‐based verification QA: recommendations of AAPM Task Group No. 218, Medical physics, 45(4), e53-e83, 2018.
[12]  Delishaj, D., et al., Set-up errors in head and neck cancer treated with IMRT technique assessed by cone-beam computed tomography: a feasible protocol, Radiation oncology journal, 36(1), 54, 2018.
[13] Batumalai, V., L. Holloway, and G.P. Delaney., A review of setup error in supine breast radiotherapy using cone-beam computed tomography. Medical Dosimetry, 41(3), 225-229, 2018.
[14] Samuelsson, A., C. Mercke, and K.-A. Johansson., Systematic set-up errors for IMRT in the head and neck region: effect on dose distribution, Radiotherapy and oncology, 66(3), 303-311, 2003.
[15]  Fraass, B.A., et al., The impact of treatment complexity and computer-control delivery technology on treatment delivery errors, International Journal of Radiation Oncology Biology Physics, 42(3), 651-659, 1998.
[16] Childress, N.L., et al., Detection of IMRT delivery errors using a quantitative 2D dosimetric verification system, Medical physics, 32(1), 153-162, 2005.
[17] Mongioj, V., et al., Set-up errors analyses in IMRT treatments for nasopharyngeal carcinoma to evaluate time trends, PTV and PRV margins, Acta Oncologica, 50(1), 61-71, 2011.
[18]  Stroom, J.C., et al., Inclusion of geometrical uncertainties in radiotherapy treatment planning by means of coverage probability, International Journal of Radiation Oncology Biology Physics, 43(4), 905-919, 1999.
[19]  McKenzie, A.L., M. van Herk, and B. Mijnheer., The width of margins in radiotherapy treatment plans, Physics in Medicine & Biology, 45(11), 3331, 2000.
[20]  Van Herk, M., et al., The probability of correct target dosage: dose-population histograms for deriving treatment margins in radiotherapy, International Journal of Radiation Oncology Biology Physics, 47(4), 1121-1135, 2000.
[21]  Biswas, P., et al., Prospective observational study to estimate set-up errors and optimise PTV margins in patients undergoing IMRT for head and neck cancers from a Government cancer centre of Eastern India, Journal of Radiotherapy in Practice, 19(1), 52-58, 2020.
[22]  Hwang, J.-M., et al., Use of electronic portal images to evaluate setup error and intra-fraction motion during free-breathing breast IMRT treatment, Medical Dosimetry, 44(3), 233-238, 2019.
[23]  Huang, G., et al., Error in the delivery of radiation therapy: results of a quality assurance review, International Journal of Radiation Oncology Biology Physics, 61(5), 1590-1595, 2005.
[24]  Bai, S., et al., Effect of MLC leaf position, collimator rotation angle, and gantry rotation angle errors on intensity-modulated radiotherapy plans for nasopharyngeal carcinoma, Medical Dosimetry, 38(2), 143-147, 2013.
[25]. Oliver, M., et al., Understanding the impact of RapidArc therapy delivery errors for prostate cancer, Journal of applied clinical medical physics, 12(3), 32-43, 2011.
[26]  Zhang, D., et al., Comparison of 3D and 2D gamma passing rate criteria for detection sensitivity to IMRT delivery errors, Journal of applied clinical medical physics, 19(4), 230-238, 2018.
[27]  Karagoz, G., et al., Evaluation of MLC leaf positioning accuracy for static and dynamic IMRT treatments using DAVID in vivo dosimetric system, Journal of applied clinical medical physics, 17(2), 14-23, 2016.
[28]  Yan, G., et al., On the sensitivity of patient‐specific IMRT QA to MLC positioning errors, Journal of applied clinical medical physics, 10(1),120-128, 2009.
[29]  Mu, G., E. Ludlum, and P. Xia., Impact of MLC leaf position errors on simple and complex IMRT plans for head and neck cancer, Physics in medicine & biology, 53(1),77, 2007.
[30]  Vieillevigne, L., et al., Gamma index comparison of three VMAT QA systems and evaluation of their sensitivity to delivery errors, Physica medica, 31(7), 720-725, 2015.
[31]  Heilemann, G., B. Poppe, and W. Laub., On the sensitivity of common gamma‐index evaluation methods to MLC misalignments in Rapidarc quality assurance, Medical physics, 40(3), 031702, 2013.
[32]  Agarwal, A., et al., Evaluating the dosimetric consequences of MLC leaf positioning errors in dynamic IMRT treatments, Journal of Radiotherapy in Practice, 18(3), 225-231, 2019.
[33]  Mubarok, S., W. Wibowo, and S. Pawiro., Evaluation of MLC errors of LINAC based on log file, in Journal of Physics: Conference Series, IOP Publishing, 2019.
[34]  Luo, W., et al., Monte Carlo based IMRT dose verification using MLC log files and R/V outputs, Medical physics, 33(7Part1), 2557-2564, 2006.
[35]  LoSasso, T., IMRT delivery system QA. Intensity modulated radiation therapy: the state of the art. Madison, WI: Medical Physics Publishing, 561-91, 2003.
[36]  Calandrino, R., et al., Human errors in the calculation of monitor units in clinical radiotherapy practice, Radiotherapy and Oncology, 28(1), 86-88, 1993.
[37]  Mohan, R., et al., The impact of fluctuations in intensity patterns on the number of monitor units and the quality and accuracy of intensity modulated radiotherapy, Medical physics, 27(6), 1226-1237, 2000.
[38]  Leszczynski, K.W. and P.B. Dunscombe, Independent corroboration of monitor unit calculations performed by a 3D computerized planning system, Journal of applied clinical medical physics, 1(4),120-125, 2000.
[39]  Clark, B.G., T. Teke, and K. Otto., Penumbra evaluation of the varian millennium and BrainLAB M3 multileaf collimators, International Journal of Radiation Oncology Biology Physics, 66(4), S71-S75, 2006.
[40]  Kim, J., et al., Relationship between dosimetric leaf gap and dose calculation errors for high definition multi-leaf collimators in radiotherapy, Physics and Imaging in Radiation Oncology, 5, 31-36, 2018.
[41]  Hu, Z., et al., Evaluating and modeling of photon beam attenuation by a standard treatment couch, Journal of applied clinical medical physics, 12(4), 139-146, 2011.
[42]  Pulliam, K.B., et al., The clinical impact of the couch top and rails on IMRT and arc therapy. Physics in Medicine & Biology, 56(23), 7435, 2011.
[43]  Njeh, C.F., T.W. Raines, and M.W. Saunders., Determination of the photon beam attenuation by the Brainlab imaging couch: angular and field size dependence, Journal of Applied Clinical Medical Physics, 10(3), 16-27, 2009.
[44]  Li, H., et al., Characterization of dose impact on IMRT and VMAT from couch attenuation for two Varian couches, Journal of applied clinical medical physics, 12(3), 23-31, 2011.
[45]  Olch, A.J., et al., Dosimetric effects caused by couch tops and immobilization devices: report of AAPM Task Group 176, Medical physics, 41(6Part1), 2014.
[46]  Myint, W.K., et al., Investigating treatment dose error due to beam attenuation by a carbon fiber tabletop, Journal of applied clinical medical physics, 7(3), 21-27, 2006.
[47]  Followill, D.S., F. Nüsslin, and C.G. Orton., IMRT should not be administered at photon energies greater than, Medical physics, 34(6Part1), 1877-1879, 2007.
[48]  Popple, R.A., et al., RapidArc radiation therapy: first year experience at the University of Alabama at Birmingham, International Journal of Radiation Oncology Biology Physics, 77(3), 932-941, 2010.
[49]  Vanetti, E., et al., The impact of treatment couch modelling on RapidArc, Physics in Medicine & Biology, 54(9), N157, 2009.
[50]  Huang, J.Y., et al., Effects of spatial resolution and noise on gamma analysis for IMRT QA, Journal of applied clinical medical physics, 15(4), 93-104, 2014.
[51]  Low, D.A. and J.F., Dempsey. Evaluation of the gamma dose distribution comparison method, Medical physics. 30(9), 2455-2464, 2003.
[52]  Bailey, D.W., et al., Statistical variability and confidence intervals for planar dose QA pass rates, Medical physics, 38(11), 6053-6064, 2011.
[53]  Wootton, L.S., et al., Error detection in intensity-modulated radiation therapy quality assurance using radiomic analysis of gamma distributions, International Journal of Radiation Oncology Biology Physics, 102(1),219-228, 2018.
[54]  Stambaugh, C. and G. Ezzell., A clinically relevant IMRT QA workflow: Design and validation, Medical physics, 45(4),1391-1399, 2018.
[55]  Woon, W., et al., A study on the effect of detector resolution on gamma index passing rate for VMAT and IMRT QA, Journal of applied clinical medical physics, 19(2), 230-248, 2018.
[56]  Nyflot, M.J., et al., Deep learning for patient‐specific quality assurance: Identifying errors in radiotherapy delivery by radiomic analysis of gamma images with convolutional neural networks, Medical physics, 46(2), 456-464, 2019.
[57]  Carlone, M., et al., ROC analysis in patient specific quality assurance, Medical physics, 40(4), 042103, 2013.
[58]  Zhen, H., B.E. Nelms, and W.A. Tomé., Moving from gamma passing rates to patient DVH‐based QA metrics in pretreatment dose QA, Medical physics, 38(10), 5477-5489, 2011.
[59]  Chandraraj, V., et al., Comparison of four commercial devices for RapidArc and sliding window IMRT QA, Journal of applied clinical medical physics, 12(2), 338-349, 2011.
[60]  Li, J.G., G. Yan, and C. Liu., Comparison of two commercial detector arrays for IMRT quality assurance, Journal of applied clinical medical physics, 10(2), 62-74, 2009.
[61]  Alharthi, T., et al., EPID sensitivity to delivery errors for pre-treatment verification of lung SBRT VMAT plans, Physica Medica, 59, 37-46, 2019.
[62]  Najem, M., et al., In-vivo EPID dosimetry for IMRT and VMAT based on through-air predicted portal dose algorithm, Physica Medica, 52, 143-153, 2018.
[63]  Olaciregui‐Ruiz, I., et al., Transit and non‐transit 3D EPID dosimetry versus detector arrays for patient specific QA, Journal of Applied Clinical Medical Physics, 20(6), 79-90, 2019.
[64]  Luo, Y., S. Chen, and G. Valdes., Machine learning for radiation outcome modeling and prediction, Medical Physics, 47(5), e178-e184, 2020.
[65]  Bojechko, C. and E. Ford., Quantifying the performance of in vivo portal dosimetry in detecting four types of treatment parameter variations, Medical physics, 42(12), 6912-6918, 2015.
[66]  Li, Y., et al., Investigating the effectiveness of monitoring relevant variations during IMRT and VMAT treatments by EPID-based 3D in vivo verification performed using planning CTs, PloS one, 14(6), e0218803, 2019.
[67]  Olaciregui-Ruiz, I., et al., Virtual patient 3D dose reconstruction using in air EPID measurements and a back-projection algorithm for IMRT and VMAT treatments, Physica Medica, 37, 49-57, 2017.
[68]  Olaciregui‐Ruiz, I., et al., Site‐specific alert criteria to detect patient‐related errors with 3D EPID transit dosimetry, Medical Physics, 46(1), 45-55, 2019.
[69]  Kimura, Y., et al., Error detection using a convolutional neural network with dose difference maps in patient-specific quality assurance for volumetric modulated arc therapy, Physica Medica, 73, 57-64, 2020.
[70]  Carlson, J.N., et al., A machine learning approach to the accurate prediction of multi-leaf collimator positional errors, Physics in Medicine & Biology, 61(6), 2514, 2016.
[71]  Ford, E.C., et al., Quality control quantification (QCQ): a tool to measure the value of quality control checks in radiation oncology, International Journal of Radiation Oncology Biology Physics, 84(3), e263-e269, 2012.
[72]  Stambaugh, C., et al., Improvements in treatment planning calculations motivated by tightening IMRT QA tolerances, Journal of Applied Clinical Medical Physics, 20(1), 250-257, 2019.