Research Paper: Design and Simulation of All Optical Frequency Shift Keying Demodulator by Using Photonic Crystal based Resonant Cavities

Document Type : Research Paper

Authors

1 Assistant Professor, Department of Electrical Engineering, Ahar Branch, Islamic Azad University, East Azarbaijan, Ahar, Iran

2 Associate Professor, Department of Electrical Engineering, Tabriz Branch, Islamic Azad University, East Azarbaijan, Tabriz, Iran.

Abstract

Using all optical devices for implementing all optical communication networks is very important. By using all optical frequency shift keying demodulators one can generate binary codes from the frequency of optical waves. In this paper a novel structure has been proposed for designing photonic crystal based all optical frequency shift keying demodulator. Three resonant cavities with different resonant modes were used for the frequency selecting section. In order to separate three different resonant modes, the radius of the defect rods used inside the cavities was chosen with different size. The simulation results show the proposed structure can generate four binary codes according to the frequency of the input optical waves. Therefore the final structure can work as an all optical frequency shift keying demodulator which can generate 00, 01, 10 and 11 codes at the output ports. The maximum delay time of the proposed structure is 4 ps.

Keywords

Main Subjects


[1]Mehdizadeh F., and  Alipour-Banaei H.., Bandgap management in two-dimensional photonic crystal thue-morse structures, J. Opt. Commun. 34, 61–65 (2013). doi:10.1515/joc-2013-0007.
[2]Wu Z..,  Xie K., and Yang H., Band gap properties of two-dimensional photonic crystals with rhombic lattice, Opt. - Int. J. Light Electron Opt. 123, 534–536 (2012).
 doi:10.1016/j.ijleo.2011.05.020.
[3] Noori M., and Soroosh M., A comprehensive comparison of photonic band gap and self-collimation based 2D square array waveguides, Opt. - Int. J. Light Electron Opt. 126, 4775–4781 (2015). doi:10.1016/j.ijleo.2015.08.082.
[4] Karimzadeh M., and Andalib A., All Optical BPSK Demodulator Using Photonic Crystal Based Coupled Waveguides, J. Opt. Commun. 0, 00. (2018)
[5] Asghari-Govar A., Andalib A., Zavvari M., and Mohammadi P., A novel proposal for all optical FSK demodulator using photonic crystal based resonant cavities, Optik (Stuttg). 203, 163953 (2020). doi:https://doi.org/10.1016/j.ijleo.2019.163953.
[6] Miao B., Chen C., Sharkway A., Shi S., and Prather D.W., Two bit optical analog-to-digital converter based on photonic crystals, Opt. Express. 14, 7966 (2006).doi:10.1364/OE.14.007966.
[7] Youssefi B., Moravvej-Farshi M.K., and Granpayeh N., Two bit all-optical analog-to-digital converter based on nonlinear Kerr effect in 2D photonic crystals, Opt. Commun. 285, 3228–3233 (2012).  doi:10.1016/j.optcom.2012.02.081.
[8] Mehdizadeh F., Soroosh M.., Alipour-Banaei H., and Farshidi E., A Novel Proposal for All Optical Analog-to-Digital Converter Based on Photonic Crystal Structures, IEEE Photonics J. 9, 1–11 (2017). doi:10.1109/JPHOT.2017.2690362.
[9] Mehdizadeh F., Soroosh M.., Alipour-Banaei H., and Farshidi E., All optical 2-bit analog to digital converter using photonic crystal based cavities, Opt. Quantum Electron. 49 (2017) 38. doi:10.1007/s11082-016-0880-8.
[10] Mehdizadeh F., Soroosh M.., Alipour-Banaei H., and Farshidi E.,, Ultra-fast analog-to-digital converter based on a nonlinear triplexer and an optical coder with a photonic crystal structure, Appl. Opt. 56, 1799–1806 (2017). doi:10.1364/AO.56.001799.
[11] Tavousi A., and Mansouri-Birjandi M.A., Optical-analog-to-digital conversion based on successive-like approximations in octagonal-shape photonic crystal ring resonators, Superlattices Microstruct. 114, 23–31 (2018). doi:10.1016/j.spmi.2017.11.021.
[12] Hassangholizadeh-Kashtiban M., Alipour-Banaei H., Tavakoli M.B.,and Sabbaghi-Nadooshan R., Creation of a fast optical Toffoli gate based on photonic crystal nonlinear ring resonators, J. Comput. Electron. 19, 1281–1287 (2020). doi:10.1007/s10825-020-01508-3.
[13] Hassangholizadeh-Kashtiban M., Alipour-Banaei H..,Tavakoli M.B., and Sabbaghi-Nadooshan R., All-optical Fredkin gate using photonic-crystal-based nonlinear cavities, Appl. Opt. 59, 635–641 (2020). doi:10.1364/AO.379613.
[14] Hassangholizadeh-Kashtiban M., Alipour-Banaei H..,Tavakoli M.B., and Sabbaghi-Nadooshan R., An ultra fast optical reversible gate based on electromagnetic scattering in nonlinear photonic crystal resonant cavities, Opt. Mater. (Amst). 94, 371–377 (2019). doi:https://doi.org/10.1016/j.optmat.2019.06.014.
[15] Alipour-Banaei H., Rabati M.G., Abdollahzadeh-Badelbou P.,and Mehdizadeh F., Effect of self-collimated beams on the operation of photonic crystal decoders, J. Electromagn. Waves Appl. 30, 1440–1448 (2016). doi:10.1080/09205071.2016.1202785.
[16] Mehdizadeh F., Alipour-Banaei H., and Serajmohammadi S., Design and simulation of all optical decoder based on nonlinear PhCRRs, Opt.-Int. J. Light Electron Opt.156, 701–706 (2018). doi:https://doi.org/10.1016/j.ijleo.2017.12.011.
[17] Khosravi S., and Zavvari M., Design and analysis of integrated all-optical 2 × 4 decoder based on 2D photonic crystals, Photonic Netw. Commun. 35, 122–128 (2018). doi:10.1007/s11107-017-0724-x.
[18] Alipour-Banaei H., Rabati M.G., Abdollahzadeh-Badelbou P.,and Mehdizadeh F., Application of self-collimated beams to realization of all optical photonic crystal encoder, Phys. E Low-Dimensional Syst. Nanostructures. 75, 77–85 (2016). doi:10.1016/j.physe.2015.08.011.
[19] Gholamnejad S., and Zavvari M., Design and analysis of all-optical 4--2 binary encoder based on photonic crystal, Opt. Quantum Electron. 49, 302 (2017). doi:10.1007/s11082-017-1144-y.
[20] Moniem T.A., All-optical digital 4 × 2 encoder based on 2D photonic crystal ring resonators, J. Mod. Opt. 63 , 735–741 (2016). doi:10.1080/09500340.2015.1094580.
[21] Rahmani A., and Mehdizadeh F., Application of nonlinear PhCRRs in realizing all optical half-adder, Opt. Quantum Electron. 50, 30 (2017).  doi:10.1007/s11082-017-1301-3.
[22] Serajmohammadi S., Alipour-Banaei H., and Mehdizadeh F., Proposal for realizing an all-optical half adder based on photonic crystals, Appl. Opt. 57, 1617 (2018) .doi:10.1364/ao.57.001617.
[23] Jalali P., and Andalib A., Application of nonlinear PhC-based resonant cavities for realizing all optical Galois Filed adder,Optik(Stuttg).180,498–504(2019). doi:https://doi.org/10.1016/j.ijleo.2018.11.125.
[24] Vali-Nasab A.-M., Mir A., and Talebzadeh R., Design and simulation of an all optical full-adder based on photonic crystals, Opt. Quantum Electron. 51, 161 (2019).doi:10.1007/s11082-019-1881-1.
[25] Jalali-Azizpoo M.R.. Soroosh R, M, and Seifi-Kavian Y., Application of self-collimated beams in realizing all-optical photonic crystal-based half-adder, Photonic Netw. Commun. 36, 344–349 (2018). doi:10.1007/s11107-018-0786-4.
[26] Askarian A., Akbarizadeh G., and Fartash M., A novel proposal for all optical half-subtractor based on photonic crystals, Opt. Quantum Electron. 51, 264 (2019). doi:10.1007/s11082-019-1978-6.
[27] Askarian A., Akbarizadeh G., and Fartash M., All-optical half-subtractor based on photonic crystals, Appl. Opt. 58, 5931 (2019). doi:10.1364/AO.58.005931.
[28] Moradi R., All optical half subtractor using photonic crystal based nonlinear ring resonators, Opt. Quantum Electron. 51, 1–9 (2019). doi:10.1007/s11082-019-1831-y.
[29] Serajmohammadi S., Alipour-Banaei H. ,and Mehdizadeh F., A novel proposal for all optical 1-bit comparator using nonlinear PhCRRs, Photonics Nanostructures - Fundam. Appl. 34, 19–23 (2019). doi:10.1016/j.photonics.2019.01.002.
[30] Zhu L., Mehdizadeh F., and Talebzadeh R., Application of photonic-crystal-based nonlinear ring resonators for realizing an all-optical comparator, Appl. Opt. 58, 8316–8321.  (2019) doi:10.1364/AO.58.008316.
[31] Surendar A., Asghari M., and Mehdizadeh F., A novel proposal for all-optical 1-bit comparator using nonlinear PhCRRs, Photonic Netw. Commun. 38, 244–249 (2019). doi:10.1007/s11107-019-00853-z.
[32] Zhao T., Asghari M., and Mehdizadeh F., An All-Optical Digital 2-to-1 Multiplexer Using Photonic Crystal-Based Nonlinear Ring Resonators, J. Electron. Mater. 48, 2482–2486 (2019). doi:10.1007/s11664-019-06947-8.