مقاله پژوهشی: تاثیر فشار هیدروستاتیکی بر ویژگی های اپتیکی و الکترونی گالیوم آرسناید

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانش‌آموختۀ کارشناسی ارشد، گروه فیزیک، دانشکده علوم، دانشگاه هرمزگان، بندرعباس، ایران

2 استادیار، گروه فیزیک، دانشکده علوم، دانشگاه هرمزگان، بندرعباس، ایران.

چکیده

در این پژوهش تأثیر فشار هیدروستاتیکی بر ویژگی­‌های اپتیکی و الکترونی ترکیب گالیوم آرسناید مورد بررسی قرار گرفته است. محاسبات در چارچوب نظریه تابعی چگالی و با استفاده از نرم افزار محاسباتی WIEN2K انجام شده است. این نرم افزار محاسباتی به صورت پتانسیل کامل با روش امواج تخت بهبود یافته خطی‌­سازی شده معادلات کوهن- شم را به صورت خودسازگار حل می­‌کند. انرژی تبادلی همبستگی با استفاده از رهیافت­‌های تقریب شیب تعمیم یافته (GGA) و تقریب چگالی موضعی تغییریافته بک- جانسون (mBJ-LDA) محاسبه شده است. همه محاسبات ساختار الکترونی و ویژگی­های اپتیکی در حضور برهم کنش اسپین- مدار انجام شده است. در مورد ویژگی­‌های الکترونی، ساختار نواری الکترونی در فشارهای مختلف محاسبه شده و سپس با استفاده از آن شکاف نواری انرژی به صورت تابعی از فشار به دست آمده است. نتایج محاسبات نشان می­‌دهد که با افزایش فشار، شکاف نواری به صورت خطی افزایش می­‌یابد. در مورد ویژگی‌­های اپتیکی، تأثیر فشار هیدروستاتیکی بر سهم‌­های موهومی و حقیقی تابع دی­‌الکتریک مورد بررسی قرار گرفته است. نتایج محاسبات نشان می­دهد که با افزایش فشار انرژی آستانه جذب و شاخص­ترین قلّه­ها در سهم موهومی تابع دی­‌الکتریک به طرف انرژی‌­های بالاتر و با کاهش فشار به سمت انرژی‌­های پایین­‌تر جابه‌­جا می‌­شوند. همچنین نتایج محاسبات نشان  می‌­دهد که با افزایش فشار ثابت دی‌­الکتریک استاتیک به صورت خطی کاهش می‌­یابد. همچنین، با استفاده از نتایج محاسبات مربوط به سهم‌­های حقیقی و موهومی تابع دی‌­الکتریک، ضریب شکست استاتیک و شکاف اپتیکی در فشارهای مختلف محاسبه شده است.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Research Paper: The Effect of Hydrostatic Pressure on the Electronic and Optical Properties of GaAs

نویسندگان [English]

  • Sina Heydari 1
  • Maryam Noorafshan 2
1 M. Sc. Graduated, Department of Physics, Faculty of Sciences, University of Hormozgan, Bandar-abbas, Iran.
2 Assistant Professor, Department of Physics, Faculty of Sciences, University of Hormozgan, Bandar-abbas, Iran
چکیده [English]

In this research, the effect of hydrostatic pressure on the electronic structure and optical properties of GaAs compound has been investigated. The calculations have been done based on the density functional theory (DFT) using WIEN2K computational package. This computational package solves Kohn-Sham equations by the full-potential linearized augmented plane wave (FP-LAPW) method self-consistently. The exchange-correlation potential is calculated by the Generalized gradient approximation (GGA) and a combination of modified Becke — Johnson plus local-density approximation (mBJ-LDA) functional. All the electronic and optical properties calculations have been done in the presence of spin-orbit interaction. In the case of electronic structure calculations, using the band structure calculations at different pressures, the pressure dependence of band gap energy is calculated. The results of calculations show that by increasing the pressure the band gap energy increases linearly. Regarding the optical properties, the effect of hydrostatic pressure on the real and imaginary parts of the dielectric function ε(ω) is calculated. The results show that by increasing pressure the absorption edge and the major peaks in the imaginary part of the dielectric function are shifted towards higher energies whereas by decreasing the pressure they are shifted towards lower energies. The results also show that by increasing the pressure, the static dielectric function decreases linearly. Using the results of the real and imaginary dielectric function calculations, the optical gap and the static refractive index at different pressures are also calculated.

کلیدواژه‌ها [English]

  • Density Functional Theory
  • Electronic Properties
  • Optical Properties
  • Hydrostatic Pressure
  • GaAs Compound
[1] Yoon J., Jo S., Chun I.S., Jung I., Kim H.S., Meitl M., and Rogers J.A., GaAs photovoltaics and optoelectronics using releasable multilayer epitaxial assemblies, Nature, 465, 329–333, 2010.
[2] Nelson J., Imperial College Press, The physics of solar cells, 1, 9-15 2003.
 [3] Liou J., Wong W., Comparison and optimization of the performance of Si and GaAs solar cells, Solar Energy Materials and Solar Cells, 28, 9–28, 1992.
[4] Brivio F., Walker A.B., and Walsh A., Structural and electronic properties of hybrid perovskites for high-efficiency thin-film photovoltaics from first-principles, Apl Materials, 1, 1-5, 2013.
[5] Qiu J., Qiu Y., Yan K., Zhong M., Mu C., Yan H., and Yang S., All-solid-state hybrid solar cells based on a new organometal halide perovskite sensitizer and one-dimensional TiO2 nanowire arrays, Nanoscale, 5, 3245–3248, 2013.
[6] Eperon G.E., Stranks S.D., Menelaou C., Johnston M.B., Herz L.M., and Snaith H.J., Formamidinium lead trihalide: A broadly tunable perovskite for efficient planar heterojunction solar cells, Energy and Environmental Science, 7, 982–988, 2014.
[7] Ameur K., Mazari H., Benseddik N., Benamara Z., Benyahya N., and Boumesjed A., Optimization of a GaAsN Ternary Alloy Based Solar Cell for High Efficiency, Parameters, 8, 114–119, 2018.
[8] Boubakeur M., Aissat A., and Vilcot J.P., Study of GaAs1-xNx/GaAs Quantum Dot Structure for Solar Cell Applications, in Proceedings of 2019 7th International Renewable and Sustainable Energy Conference ( IRSEC), 1,  1-5, 2019.
[9] Noorafshan M., Density functional study of electronic, elastic and optical properties of GaAs1− xNx (x= 0, 0.25, 0.50, 0.75, 1) alloys, Computational Condensed Matter, 31, 1-9, 2022.
[10] Gagui S., Ghemid S., Meradji H., Zaidi B., Amimour B., Tahir, S.A., and Kushwaha A.K., Ab-initio study on the phase transition, elastic, optoelectronic, and thermodynamic properties of GaAs1-xSbx, Optik, 219, 1-19, 2020.
[11] Ospina D.A., Mora-Ramos M.E., and Duque C.A., Effects of hydrostatic pressure and electric field on the electron-related optical properties in GaAs multiple quantum well, Journal of Nanoscience and Nanotechnology, 17, 1247–1254, 2017.
[12] You J.F., Zhao Q., Zhang Z.H., Yuan J.H., Guo K.X., and Feddi E., The effect of temperature, hydrostatic pressure and magnetic field on the nonlinear optical properties of AlGaAs/GaAs semi-parabolic quantum well, International Journal of Modern Physics B, 33, 1-12, 2019.
[13] Noorafshan M., Effect of hydrostatic pressure on electronic structure and optical properties of InAs: A first principle study, Acta Physica Polonica A, 137, 1153–1157, 2020.
 [14]Nourbakhsh Z., First principles study of the structural, electronic and optical properties of ZnSxSe1-x alloys, Physica B: Condensed Matter, 405, 4173–4187, 2010.
[15]Salehi H., Badehian H.A., and Farbod M., First principle study of the physical properties of semiconducting binary antimonide compounds under hydrostatic pressures, Materials science in semiconductor processing, 26, 477–490, 2014.
 [16]Hohenberg P., and Kohn W.J.P.R., Density functional theory (DFT), Physical Review, 136, B864-B871, 1964.
[17]Blaha P., Schwarz K., Sorantin P., and Trickey S.B., Full-potential, linearized augmented plane wave programs for crystalline systems, Computer Physics Communications, 59, 399–415, 1990. ‏
[18] Kohn W., and Sham L.J., Self-consistent equations including exchange and correlation effects, Physical Review, 140, A1133-A1138, 1965.
[19] Slater J.C., Wave functions in a periodic potential, Physical Review, 51, 846–851, 1937.
[20]Slater J.C., Suggestions from Solid‐State Theory Regarding Molecular Calculations, The Journal of Chemical Physics, 43(10), S228-S228, 1965.
 [21] Perdew J.P., Burke K., and Ernzerhof M., Generalized gradient approximation made simple, Physical Review Letters, 77(18), 3865-3868‏, 1996.
[22] Tran F., and Blaha P., Accurate band gaps of semiconductors and insulators with a semilocal exchange-correlation potential, Physical Review Letters, 102, 1-4, 2009.
 [23] Adachi S., GaAs and related materials: bulk semiconducting and superlattice properties, World Scientific, 1, 1-6, 1994.
 [24] Adachi S., GaAs, AlAs, and Al x Ga1− x As: Material parameters for use in research and device applications, Journal of Applied Physics, 58(3), R1-R29, 1985.
 [25] Murnaghan F.D., The Compressibility of Media under Extreme Pressures, Proceedings of the National Academy of Sciences, 30, 244–247, 1944. ‏
[26] Ambrosch-Draxl C., and Sofo J.O., Linear optical properties of solids within the full-potential linearized augmented planewave method, Computer Physics Communications, 175, 1–14, 2006. ‏
[27] Smith N.V., Photoelectron energy spectra and the band structures of the noble metals, Physical Review B, 3, 1862–1878, 1971. ‏
 [28] Ravindran P., Delin A., Ahuja R., Johansson B., Auluck S., Wills J.M., and Eriksson O., Optical properties of monoclinic Sn from relativistic first-principles theory, Physical Review B, 56, 6851–6861, 1997.
[29] Wooten F., Optical Properties of Solids, Academic Press, New York and London, 28(9), 803-804, 1973.
[30] Penn D.R., Wave-number-dependent dielectric function of semiconductors, Physical Review, 128, 2093–2097, 1962
[31] Marple D.T. F., Refractive index of GaAs, Journal of Applied Physics, 35, 1241–1242, 1964.