مقالۀ پژوهشی: بررسی طیف بسامدی و سطوح پوانکاره در آونگ ‌دوگانه

نوع مقاله : مقاله پژوهشی

نویسندگان

1 استادیار، گروه علوم پایه، دانشگاه پیام نور، تهران، ایران

2 دانشیار، گروه فیزیک، دانشگاه کردستان، سنندج، ایران

3 دانش‌آموختۀ کارشناسی ارشد، گروه فیزیک، منطقه‌ ورامین، اداره آموزش و پرورش شهرستان‌های استان تهران، ایران

4 دانشجوی کارشناسی ارشد، گروه فیزیک، دانشگاه کردستان، سنندج، ایران

5 مربی، گروه ریاضی و فیزیک، دانشکده فنی شهید یزدان‌پناه، شاخه سنندج، دانشگاه فنی و حرفه‌ای، کردستان، ایران

چکیده

در این مقاله، رفتار آونگ‌­های دوگانه با در نظر گرفتن تغییر در شرایط اولیه (یعنی افزایش زاویه­­ انحراف آونگ بیرونی برای چهار حالت متفاوت 12، 30، 90 و 150درجه) و همچنین بررسی اثر هندسه­ آونگ­ها (افزایش طول بازو و جرم آونگ بیرونی) مطالعه شده است. بعد از استخراج معادلات حرکت آونگ­ها، با استفاده از نگرش لاگرانژی، به‌منظور بررسی تعیین طیف بسامدی، مسیر حرکت آونگ­‌ها و هم­چنین مشخص کردن رفتار آن­ها در هر حالت، از روش­های تبدیل سریع فوریه و سطوح پوانکاره استفاده شده است. نتایج بدست ‌آمده نشان می‌دهد که افزایش زاویه­ انحراف آونگ بیرونی منجر به افزایش سطح انرژی سامانه شده که پیامد آن، تغییر رفتار آونگ­ها از حالت دوره­ای و شبه‌­دوره­ای برای زاویه‌­های کمتر از 90 درجه به رفتار آشوبناک برای زوایای بیشتر از 90 درجه است. به‌صورتی‌که در حالت آشوبناک مقدار سطح انرژی نسبت به حالت دوره­ای بیشتر از دو برابر افزایش‌یافته است. افزون بر این، در درون رفتار آشوبناک، به ­نظر می­رسد که یک رفتار شبه‌­دوره­ای باگذشت زمان در حال شکل­‌گیری است. از طرف دیگر نتایج محاسبات از تأثیر بسیار چشمگیر ساختار هندسی سامانه بر رفتار آونگ­ها حکایت دارد. بر اساس محاسبات انجام‌شده، پیامد افزایش طول بازوی آونگ دوم تنها منجر به ایجاد رفتاری کاملاً متفاوت با مورد مشابهش (حالت سوم) گردیده، اگرچه سطح انرژی آن‌ها باهم یکسان است. اما افزایش جرم آونگ دوم به دو برابر نه‌تنها سطح انرژی سیستم را به‌اندازه‌ی تقریبی 330 ژول کاهش داده، بلکه رفتار آشوبناکی (نسبت به حالت سوم) نیز از خود نشان داده است.

کلیدواژه‌ها


عنوان مقاله [English]

Research Paper: Investigation of Frequency Spectrum and Poincaré Surfaces in Double Pendulum

نویسندگان [English]

  • AbdolJabbar Shokri 1
  • Behrooz Malekolkalami 2
  • Hamed Heidari 3
  • Mahyar Debiqian 4
  • Sayed Omid Sobhani 5
1 Assistant Professor, Department of Science, University of Payamenoor, Tehran, Iran.
2 Associate Professor, Department of Physics, University of Kurdistan, Sanandaj, Iran.
3 M. Sc. Graduated, Department of Physics, Varamin Region, Directorate of Education of Tehran Province, Iran.
4 M. Sc. Student, Department of Physics, University of Kurdistan, Sanandaj, Iran
5 Instructor, Mathematics and Physics Department, Faculty of Shahid Yazdanpanah, Sanandaj Branch, Technical and Vocational University (TVU), Kurdistan, Iran.
چکیده [English]

In this paper, the behavior of the double pendulums has been studied by considering the effect of initial conditions (angular displacement of the outer pendulum for four cases 12, 30, 90, and 150 degrees) and the influence of system geometry (increasing rod length and mass of the second pendulum), also. After extracting motion equations using the Lagrangian method, in order to deal with the frequency spectrum, traces of bobs, and understanding the system behavior for every case, the Fast Fourier Transform (FFT) technique and Poincare sections have been applied. The obtained results show that the consequence of the rising angular displacement the outer pendulum is to increase the energy level of the system and the change of its behavior from quasi-periodic for angular displacement is less than 90 degrees to chaotic when it is 150 degrees. Therefore, the energy level, in this case, has increased more than twice compared to the first. In addition, it seems a quasi-periodic behavior is forming at the heart of chaotic behavior. On the other hand, the results indicate a very significant effect of geometrics on a system's behavior. According to the calculations, the consequence of increasing the length of the rod of the second pendulum has only led to a different behavior from its similar case (case number 3) completely. however, their energy level is the same. Increasing the mass of the outer by twice not only to lead decrease energy level of the system by 330J but also has shown chaotic behavior (in comparison to the case3).

کلیدواژه‌ها [English]

  • Computer Simulation
  • Fourier Transform
  • Double Pendulum
  • Poincaré Surfaces
  • Chaos
[1] Fowles, G. R., Introduction to modern optics: Courier Corporation, 1989.
[2] Thornton, S. T., & Marion, J. B., Classical dynamics of particles and systems: Cengage Learning, 2021.
[3] French, A. P. Vibrations and waves: CRC press, 2017.
[4] Razavizadeh, N., Physics of wave and vibrations, Mofid Corporation,(in Persian), 2003.
[5] Qasemi, H., Khosravizadeh, S., Solved Problems in Analytical Mechanics, Daneshnegar Publication,First Edition, (in Persian), 2003.
[6] Pook, L. P., Understanding pendulums: a brief introduction: Springer, 2011.
[7] Maiti, S., Roy, J., Mallik, A. K., & Bhattacharjee, J. K., Nonlinear dynamics of a rotating double pendulum. Physics Letters A, 380(3), 408-412, 2016.
[8] Roy, J., Mallik, A. K., & Bhattacharjee, J. K., Role of initial conditions in the dynamics of a double pendulum at low energies. Nonlinear Dynamics, 73(1), 993-1004, 2013.
[9] Stachowiak, T., & Okada, T., A numerical analysis of chaos in the double pendulum. Chaos, Solitons & Fractals, 29(2), 417-422, 2006.  
[10] Espíndola, R., Del Valle, G., Hernández, G., Pineda, I., Muciño, D., Díaz, P., & Guijosa, S., The Double Pendulum of Variable Mass: Numerical Study for different cases. Paper presented at the Journal of Physics: Conference Series, 2019.
[11] Razavi, S.E., Ghaderi, F., numerical simulation of chaotic behavior in double pendulum with moving pivot, Sharif Mechanical Engineering Journal Volume 29, Issue 2, Page 33-38, 2012.
[12] Sun, Ning, et al. "An energy-optimal solution for transportation control of cranes with double pendulum dynamics: Design and experiments." Mechanical Systems and Signal Processing 102: 87-101, 2018.
[13] Kiyoumarsi, Arash, et al. "The mathematical modeling of a double-pendulum system as a physical model of flexible arm robot." 2007 IEEE International Conference on Control and Automation. IEEE, 2007.
[14] Kibble, T., & Berkshire, F. H. Classical mechanics: world scientific publishing company, 2004.
[15] Goldstein, H., Poole, C., & Safko, J., Classical mechanics. In: American Association of Physics Teachers, 2002.
[16] Greiner, W., & Bromley, D. A. Classical mechanics: systems of particles and Hamiltonian dynamics: Springer, 2003.
[17] Kovacic, I., Zukovic, M., & Radomirovic, D. Normal modes of a double pendulum at low energy levels. Nonlinear Dynamics, 99(3), 1893-1908, 2020.
[18] Ingard, K. U. Fundamentals of waves and oscillations: Cambridge University Press, 1988.
[19] www. comsol. Com. (2022)
[20] Gustafsson, B. Fundamentals of scientific computing. Springer Science & Business Media:; Vol. 8, 2011.
[21] Logan, D. L., A first course in the finite element method. Cengage Learning, 2016.
[22] Epperson, J. F., An introduction to numerical methods and analysis. John Wiley & Sons, 2021. 
[23] Feldman, D., Chaos and dynamical systems. Princeton University Press, 2019.
[24] Gleick, J., Berry, M. J. N., Chaos-making a new science, 1987.
[25] Esfandiari, R. S.; Lu, B., Modeling and analysis of dynamic systems. CRC press, 2018.
[26] www. maplesoft.com. (2022)
[27] Tolstov, G. P. Fourier series: Courier Corporation, 2012.
[28] Gleick, J., Berry, M., Chaos-making a new science. Nature, 330, 293, 1987.
[29] Lynch, S. Dynamical systems with applications using MATLAB: Springer, 2004.