مقالۀ پژوهشی: حل عددی معادله گراد-شافرانف برای مطالعه تعادل پلاسمای توکامک الوند

نوع مقاله : مقاله پژوهشی

نویسندگان

استادیار، پژوهشکده پلاسما و گداخت هسته‌ای، پژوهشگاه علوم و فنون هسته‌ای، تهران، ایران

چکیده

توکامک الوند یک توکامک اندازه کوچک پژوهشی برای مطالعات پلاسمای محصور­شده مغناطیسی است. سطح مقطع پلاسمای این توکامک دایروی بوده و ساده‌­تر بودن ساختار آن نسبت به توکامک‌­های با سطح مقطع کشیده امکان پژوهش‌های فیزیکی بنیادی­‌تری را با استفاده از آن فراهم می­سازد. یکی از مباحث مهم در پایداری پلاسمای توکامک و افزایش زمان محصورسازی، مطالعه تعادل پلاسما با توجه به هندسه و شرایط مرزی توکامک است. در این پژوهش معادله تعادل گراد- شافرانف برای هندسه توکامک الوند به روش عددی مورد بررسی و تحلیل قرار گرفت. داده­های بدست آمده از محاسبات نشان داد که برای جریان پلاسمای در حدود 30 کیلوآمپر و جریان پیچه میدان عمودی 1400 آمپر کمترین نسبت منظر برای سطح مقطع پلاسما بدست می‌­آید که برابر با 2/4 خواهد بود. تولید پلاسمایی با این نسبت منظر منجر به حضور پلاسما در کل ناحیه مجاز توسط محدود­کننده­ها شده و بدین ترتیب بیشترین حجم پلاسمای ممکن در توکامک وجود خواهد داشت.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Numerical Solutions to the Grad–Shafranov Equation for Studying Plasma Equilibrium of Alvand Tokamak

نویسندگان [English]

  • Chapar Rasouli
  • Banafsheh Pourshahab
Assistant Professor, Plasma and nuclear fusion research school, nuclear science and technology research institute (NSTRI), Tehran, Iran.
چکیده [English]

Alvand tokamak is a small-sized research tokamak for magnetically confined plasma studies. The plasma cross-section of this tokamak is circular, and its simpler structure compared to tokamaks with an elongated cross-section allows for more fundamental physics research. One of the important topics in the stability of tokamak plasma and increasing the confinement time is the study of plasma equilibrium according to the geometry and boundary conditions of the tokamak. In this research, the Grad-Shafranov equilibrium equation for Alvand tokamak geometry was investigated and analyzed numerically. The data obtained from the calculations showed that for a plasma current of about 30 kA and a vertical field coil, a current of 1400 A, the lowest aspect ratio for the plasma cross section is obtained, which will be equal to 4.2. Plasma production with this aspect ratio leads to the presence of plasma in the entire area allowed by the limiters and thus there will be the largest possible volume of plasma in the tokamak chamber.

کلیدواژه‌ها [English]

  • Alvand Tokamak
  • Plasma Equilibrium
  • Grad-Shafranov Equation
  • Numerical Solution
  1. Artsimovich L. A., “Tokamak Devices”, Nucl. Fusion, 12, 215-252, 1972. DOI 10.1088/0029-5515/12/2/012
  2. Kadomtsev B.B., Troyon F.S., Watkins M.L, “Tokamaks”, Nucl. Fusion. 30, 1675-1694, 1990. DOI 10.1088/0029-5515/30/9/003
  3. Khayrutdinov R.R., Lukash V.E., “Studies of Plasma Equilibrium and Transport in a Tokamak Fusion Device with the Inverse-variable Technique”, Journal of Computational Physics, 109, 193-201, 1993. DOI 10.1006/jcph.1993.1211
  4. Shafranov V. D.,” On magnetohydrodynamical equilibrium configurations”, Sov, Phys. JETP, 6, 545-554, 1958.
  5. Cefron A. J., Freidberg J. P., ”One size fits all analytic solutions to the grad-Shafranov equation”, Physics of Plasmas, 17, 032502-1 - 032502-9, 2010. DOI 10.1063/1.3328818
  6. Maceda-Ramírez O., Carrera-Padilla C. R., Salguero-Martínez K., Segura-Ramírez M. A., and JHerrera-Velázqueza. J. E., “Exploring the limits of solov’ev profiles”, Physics of Plasmas 28, 092509-1 - 092509-11, 2021. DOI 10.1063/5.0056125.
  7. Atanasiu C. V., Günter S., Lackner K. and Miron I. G., “Analytical solutions to the Grad–Shafranov equation”, Physics of Plasmas 11, 3510-3518, 2004. DOI 10.1063/1.1756167.
  8. López J. E., Orozco E. A., Dougar-Zhabon V. D., “Fixed boundary Grad-Shafranov solver using finite difference method in nonhomogeneous meshgrid”, Journal of Physics: Conference Series, Volume 1159, 1-6, 2019. DOI 10.1088/1742-6596/1159/1/012017.
  9. Rasouli C., Abbasi Davani F., Rokrok B., “Study of plasma equilibrium in toroidal fusion devices using mesh-free numerical calculation method”, Physics of Plasmas 23, 082511-1 – 082511-7, 2016. DOI 10.1063/1.4960680.
  10. Feneberg W., “Tokamak with superposed multipole magnetic field”, Physics Letter A, 36, 125-126, 1971. DOI 10.1016/0375-9601(71)90777-8.
  11. Lackner K.,” Computation of ideal MHD equilibria”, Comp. Phys. Comm, 12, 33-44, 1976. DOI 10.1016/0010-4655(76)90008-4.
  12. McNamara B., Computer Applications to Controlled Fusion Research (methods in computational physics)”, Vol 16, Academic Press, New York, 211, 1976.
  13. Carnahan Brice, Luther H. A., Wilkes James O, “Applied Numerical methods”, John Wiley and Sons, 1969.
  14. Landau Rubin H., José Páez Manuel, and Bordeianu Cristian C., “Computational Physics: Problem Solving with Computers”, Second edition, Wiley-VCH Verlag GmbH, 2007.