تأثیر تلاطم غلاف پلاسمایی بر حالت‌های تکانه‌ی زاویه‌ای مداری باریکه‌های بسل-گوسین و لاگر-گوسین

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانش‌آموختۀ دکتری، دانشکده‌ی فیزیک، دانشگاه تبریز، تبریز، ایران

2 دانشیار، پژوهشکده‌ی فیزیک کاربردی و ستاره شناسی، دانشگاه تبریز، تبریز، ایران

چکیده

در این پژوهش احتمال حضور حالت‌های تکانه‌ی زاویه‌ای مداری باریکه‌های بسل- گوسین و لاگر- گوسین انتشار یافته در تلاطم غلاف پلاسمایی به صورت نظری بررسی می‌شود. برای این منظور با استفاده از طیف وون کارمن تصحیح شده در چارچوب نظری رایتوف، طیف تکانه‌ی زاویه‌ای مداری باریکه‌های ورتکس استخراج می‌شود، و سپس تجزیه و تحلیل‌های عددی برای نشان دادن تفاوت ویژگی­های انتشاری دو باریکه‌ی ورتکس در نظر گرفته شده در داخل تلاطم غلاف پلاسمایی انجام می‌پذیرد. نتایج بدست آمده نشان می‌دهند که پارامترهای باریکه‌ی فرودی همانند عدد مد زاویه‌ای، کمر باریکه، و طول موج به راحتی می‌توانند طیف تکانه‌ی زاویه‌ای مداری هر دو نوع باریکه‌ی ورتکس را تحت تأثیر قرار دهند. همچنین، افزایش پارامترهای ناهمسانگردی محیط متلاطم می‌تواند منجر به کاهش اختلال ناشی از تلاطم شود. افزون بر این، مشخص می‌شود که باریکه‌های غیرپراشی بسل- گوسین ویژگی­های انتشاری بهتری نسبت به باریکه‌های لاگر- گوسین در تلاطم غلاف پلاسمایی نشان می‌دهند. ویژگی­های بیان شده به باریکه‌های بسل- گوسین این امکان را فراهم می‌سازد تا به عنوان گزینه­ای خوب برای کاربردهای ارتباطی در فضای آزاد باشند.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

The Effect of Plasma Sheath Turbulence on the Orbital Angular Momentum States of Bessel-Gaussian and Laguerre-Gaussian Beams

نویسندگان [English]

  • Davod Nobahar 1
  • Sirous Khorram 2
1 PhD Graduated, Faculty of Physics, University of Tabriz, Tabriz, Iran
2 Associate Professor, Research Institute for Applied Physics and Astronomy, University of Tabriz, Tabriz, Iran
چکیده [English]

In this work, detection probability of the orbital angular momentum (OAM) states of the Bessel-Gaussian (BG) and Laguerre-Gaussian (LG) beams passing through a plasma sheath turbulence (PST) are theoretically investigated. For this purpose, OAM-spectrum of the vortex beams (VB) is derived by using the modified von-Karman spectrum in the frame of Rytov theory, then some numerical analysis is performed to show the difference of considered VBs in the propagation through a PST. Obtained results indicate that incident beam parameters such as angular mode number, beam waist, and wavelength can easily affect the OAM-spectrum of both types of VBs. As well as, increasing the anisotropic parameters of the turbulent media can mitigate the turbulence-induced disturbance of the propagated VBs. Furthermore, it is found that diffraction-free BG beams show a better propagation performance than LG beams in the PST. This feature allows the BG beam to be a good candidate for free-space communication applications. 

کلیدواژه‌ها [English]

  • Plasma Sheath
  • Orbital Angular Momentum
  • Turbulence
  • Vortex Beams
[1] Kaushal H., Jain V.K. and Kar S., "Free space optical communication", New Delhi: Springer India Pvt. Ltd., 2017.
[2] Zhu Z., Janasik M., Fyffe A., Hay D., Zhou Y., Kantor B., Winder T., Boyd R.W., Leuchs G. and Shi Z., "Compensation-free high-dimensional free-space optical communication using turbulence-resilient vector beams", Nat. Commun., 12, 1666, 2021. https://doi.org/10.1038/s41467-021-21793-1.
[3] Starkey R.P., "Hypersonic vehicle telemetry blackout analysis", J. Spacecr Rockets, 52, 426–438, 2015. https://doi.org/10.2514/1.A32051.
[4] Yuan Y., Lei T., Li Z., Li Y., Gao S., Xie Z. and Yuan X., "Beam wander relieved orbital angular momentum communication in turbulent atmosphere using Bessel beams", Sci. Rep., 7, 42276, 2017. https://doi.org/10.1038/srep42276.  
[5] Nobahar D., Khorram S. and Rodrigues J.D., "Orbital angular momentum state variation of vortex beams propagating in a plasma sheath turbulence", Opt. Laser Technol., 159, 108911, 2023. https://doi.org/10.1016/j.optlastec.2022.108911.
[6] Chen M., Wang X., Qin C., Yuan Q. and Wang L., "The spiral phase spectrum of the composite power Gaussian vortex beam in plasma sheath turbulence", Phys. Scr., 99, 01550, 2024. https://doi.org/10.1088/1402-4896/ad0e52.
[7] Allen L., Beijersbergen M.W., Spreeuw R.J.C. and Woerdman J.P., "Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes", Phys. Rev. A, 45, 8185–8189, 1992. https://doi.org/10.1103/PhysRevA.45.8185.  
[8] Tian N., Fu L. and Gu M., "Resolution and contrast enhancement of subtractive second harmonic generation microscopy with a circularly polarized vortex beam", Sci. Rep., 5, 13580, 2015. https://doi.org/10.1038/srep13580.
[9] Bozinovic N., Yue Y., Ren Y., Tur M., Kristensen P., Huang H., Willner A.E. and Ramachandran S., "Terabit-scale orbital angular momentum mode division multiplexing in fibers", Science, 340, 1545–1548, 2013. https://doi.org/10.1126/science.1237861.
[10] Bahari B., Hsu L., Pan S.H., Preece D., Ndao A., Amili A.E., Fainman Y. and Kanté B., Photonic quantum Hall effect and multiplexed light sources of large orbital angular momenta, Nat. Phys., 17, 700–703, 2021. https://doi.org/10.1038/s41567-021-01165-8.
[11] Nobahar D., Khorram S. and Rodrigues J.D., "Vortex beam manipulation through a tunable plasma-ferrite metamaterial", Sci. Rep., 11, 16048, 2021. https://doi.org/10.1038/s41598-021-95693-1.
[12] Nobahar D., Hajisharifi K. and Mehdian H., Twisted beam shaping by plasma photonic crystal, J. Appl. Phys., 124, 213102, 2018. https://doi.org/10.1063/1.5049547.
[13] Forbes A., Oliveira M.D. and Dennis M.R., "Structured light", Nat. Photonics, 15, 253–262, 2021. https://doi.org/10.1038/s41566-021-00780-4.
[14] Babiker M., Andrews D.L. and Lembessis V.E., "The Angular Momentum of Light", Cambridge University Press, Cambridge, 2013.
[15] Willner A.E., Pang K., Song H., Zou K. and Zhou H., "Orbital angular momentum of light for communications", Appl. Phys. Rev., 8, 041312, 2021. https://doi.org/10.1063/5.0054885.
[16] Wang J., "Advances in communications using optical vortices", Photonics Res., 4, B14–B28, 2016. https://doi.org/10.1364/PRJ.4.000B14.
[17] Khonina S.N., Kazanskiy N.L., Karpeev S.V. and Butt M.A., "Bessel beam: Significance and applications—A progressive review", Micromachines, 11, 997, 2020. https://doi.org/10.3390/mi11110997.
[18] Nobahar D., Hajisharifi K. and Mehdian H., "Collisional absorption of the optical vortex beam in plasma", Opt. Laser Technol., 117, 165–168, 2019. https://doi.org/10.1016/j.optlastec.2019.04.016.
[19] Nobahar D. and Akou H., "Distortion of a twisted beam passing through a plasma layer", Appl. Opt., 59, 6497–6504, 2020. https://doi.org/10.1364/AO.394698.
[20] Li J., Li J., Guo L., Cheng M. and Xi L., "Polarization characteristics of radially polarized partially coherent vortex beam in anisotropic plasma turbulence", Waves Random Complex Media, 31, 1931–1944, 2021. https://doi.org/10.1080/17455030.2020.1713421.
[21] Li J., Yang S., Guo L. and Cheng M., "Anisotropic power spectrum of refractive-index fluctuation in hypersonic turbulence", Appl. Opt., 55, 9137–9144, 2016. https://doi.org/10.1364/AO.55.009137.
[22] Yura H.T., "Mutual coherence function of a finite cross section optical beam propagating in a turbulent medium", Appl. Opt., 11, 1399–1406, 1972. https://doi.org/10.1364/AO.11.001399.