مقالۀ پژوهشی: کاربرد پراکندگی برانگیخته بریلوئین در حسگرهای توزیعی دما با استفاده از فیبرهای نوری تک مد

نوع مقاله : مقاله پژوهشی

نویسنده

استادیار، بخش فیزیک، واحد کرمان، دانشگاه آزاد اسلامی، کرمان، ایران

چکیده

در این پژوهش، یکی از کاربردهای پراکندگی برانگیخته بریلوئین در رابطه با حسگرهای توزیعی دما که فیبرهای نوری تک مد مرسوم را به کار می‌برند بررسی می‌شود. هدف یافتن رابطه‌ای بین جابه‌جایی‌های بسامدی بریلوئین و دما تا حدود 1500 درجه سانتی‌گراد در این حسگرهای توزیعی دما است. در ابتدا تقریب خطی سرعت موج آکوستیک و یک چندجمله‌ای گزارش‌شده نمارشکست برحسب دما برای محاسبه جابه‌جایی بسامدی بریلوئین به کار می‌روند. مقایسه جابه‌جایی بسامدی بریلوئین بدست آمده با دو دسته مستقل داده‌های آزمایشگاهی کنونی نشان می‌دهد که رابطه خطی مورد نظر بین سرعت موج آکوستیک و دما به خصوص در دماهای زیاد معتبر نمی‌باشد. سپس از راه برازش منحنی داده‌های آزمایشگاهی گزارش‌شده دیگری، چند جمله‌ای‌هایی با مراتب مختلف تا درجه شش برای سرعت موج آکوستیک برحسب دما پیشنهاد می‌شود. نتایج نشان می‌دهند که چند جمله‌ای‌های پیشنهادی مرتبه دوم و سوم سرعت موج آکوستیک را می‌توان در محاسبه جابه‌جایی‌های بسامدی بریلوئین به کار برد، به صورتی که آن‌ها حتی در دماهای زیاد به داده‌های آزمایشگاهی بسیار نزدیک‌تر باشند.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Research Paper: Application of Stimulated Brillouin Scattering in Distributed-Temperature Sensors Using Single-Mode Optical Fibers

نویسنده [English]

  • Mohammadreza Rezazadeh Shirazi
Assistant Professor, Department of Physics , Kerman Branch, Islamic Azad University, Kerman, Iran
چکیده [English]

This research investigates one of the stimulated Brillouin scattering applications related to distributed-temperature sensors that utilize common single-mode optical fibers. The aim is to find a relation between the Brillouin frequency shift (BFS) and temperature up to 15000C in these distributed-temperature sensors. At first, a linear approximation of the acoustic wave velocity and a reported polynomial of the refractive index with temperature are employed to calculate BFS. A comparison of the obtained BFS with two independent sets of recent experimental data shows that the linear relation between acoustic wave velocity and temperature, which is generally considered valid, is not valid, especially at high temperatures. Then, using a curve-fitting method based on another reported experimental data set, different-order polynomials of degrees up to six are considered for the acoustic wave velocity with temperature. The results show that the proposed second and third-order polynomials of the acoustic wave velocity can be used to calculate BFSs that align more closely with experimental data, even at elevated temperatures.

کلیدواژه‌ها [English]

  • Stimulated Brillouin Scattering
  • Sensor
  • Optical Fiber
  • Temperature
  • Strain
[1] Bahrampour, A.R., Tofighi, S., Bathaee, M. and Farman, F., "Optical fiber interferometers and their applications", Interferometry-Research and Applications in Science and Technology 1, 3-30, 2012. DOI: https://doi.org/10.5772/34346
[2] Islam, M.R., Ali, M.M., Lai, M.H., Lim, K.S. and Ahmad, H., "Chronology of Fabry-Perot interferometer fiber-optic sensors and their applications: a review", Sensors 14(4), 7451-7488, 2014. DOI: https://doi.org/10.3390/s140407451
[3] Rajan, G. ed., Optical fiber sensors: advanced techniques and applications. CRC press, 2017. DOI: https://doi.org/10.1201/b18074
[4] Hisham, H.K., "Optical fiber sensing technology: basics, classifications and applications", Am. J. Remote Sens 6(1), 1-5, 2018. DOI: 10.11648/j.ajrs.20180601.11
[5] Hartog, A.H., An introduction to distributed optical fibre sensors. CRC press, 2017.  DOI: https://doi.org/10.1201/9781315119014
[6] Katrenova, Z., Alisherov, S., Abdol, T., Yergibay, M., Kappassov, Z., Tosi, D. and Molardi, C., "Investigation of high-resolution distributed fiber sensing system embedded in flexible silicone carpet for 2D pressure mapping", Sensors 22(22), 8800, 2022.
[7] Chai, J. and Du, W., "Experimental study on the application of BOTDA in the overlying strata deformation monitoring induced by coal mining", Journal of Sensors 2019(1), 3439723, 2019. DOI: https://doi.org/10.1155/2019/3439723
[8] Zeni, L., Picarelli, L., Avolio, B., Coscetta, A., Papa, R., Zeni, G., Di Maio, C., Vassallo, R. and Minardo, A., "Brillouin optical time-domain analysis for geotechnical monitoring", Journal of Rock Mechanics and Geotechnical Engineering 7(4), 458-462, 2015.  DOI: https://doi.org/10.1016/j.jrmge.2015.01.008
[9] Zhao, M., Yi, X., Zhang, J. and Lin, C., "PPP-BOTDA distributed optical fiber sensing technology and its application to the Baishuihe landslide", Frontiers in Earth Science 9, 660918, 2021.DOI: https://doi.org/10.3389/feart.2021.660918
[10] Krohn, D. and Nicholls, P., "Fiber optic sensor applications in transportation infrastructure protection", In Photonics in the Transportation Industry: Auto to Aerospace II, 7314, 54-62. SPIE, 2009.DOI: https://doi.org/10.1117/12.820797
[11] Rovera, A., Tancau, A., Boetti, N., Dalla Vedova, M.D., Maggiore, P. and Janner, D., "Fiber optic sensors for harsh and high radiation environments in aerospace applications", Sensors 23(5),2512, 2023. DOI: https://doi.org/10.3390/s23052512
[12] Zhou, D., Dong, Y., Wang, B., Pang, C., Ba, D., Zhang, H., Lu, Z., Li, H. and Bao, X., "Single-shot BOTDA based on an optical chirp chain probe wave for distributed ultrafast measurement", Light: Science & Applications 7(1), 32, 2018. DOI: https://doi.org/10.1038/s41377-018-0030-0
[13] Urricelqui Polvorinos, J., Zornoza Indart, A., Sagüés García, M. and Loayssa Lara, A., "Dynamic BOTDA measurements based on Brillouin phase-shift and RF demodulation", Optics Express, 20(24), 26942-26949, 2012. DOI: https://doi.org/10.1364/OE.20.026942
[14] Jia, X.H., Chang, H.Q., Ao, L., Ji, X.L., Xu, C. and Zhang, W.L., "BOTDA sensors enhanced using high-efficiency second-order distributed Brillouin amplification", Optics Express 24(13), 14079-14085, 2016. DOI: https://doi.org/10.1364/oe.24.014079
[15] Jin, C., Wang, L., Chen, Y., Guo, N., Chung, W., Au, H., Li, Z., Tam, H.Y. and Lu, C., "Single-measurement digital optical frequency comb-based phase-detection Brillouin optical time domain analyzer", Optics express 25(8), 9213-9224, 2017.  DOI: https://doi.org/10.1364/oe.25.009213
[16] Lu, P., Lalam, N., Badar, M., Liu, B., Chorpening, B.T., Buric, M.P. and Ohodnicki, P.R., "Distributed optical fiber sensing: Review and perspective", Applied Physics Reviews 6(4), 2019. DOI: https://doi.org/10.1063/1.5113955
[17] Shen, J., Li, T., Zhu, H., Yang, C. and Zhang, K., "Sensing properties of fused silica single-mode optical fibers based on PPP-BOTDA in high-temperature fields", Sensors 19(22), 5021, 2019. DOI: https://doi.org/10.3390/s19225021
[18] Feng, C., Kadum, J.E. and Schneider, T., The state-of-the-art of Brillouin distributed fiber sensing. London, UK: IntechOpen, 84684, 2019. DOI: https://doi.org/10.5772/intechopen.84684
[19] Dong, Y., "High-performance distributed Brillouin optical fiber sensing", Photonic sensors 11, 69-90, 2021. DOI: https://doi.org/10.1007/s13320-021-0616-7
[20] Bao, X., Zhou, Z. and Wang, Y., "distributed time-domain sensors based on Brillouin scattering and FWM enhanced SBS for temperature, strain and acoustic wave detection", PhotoniX 2(1), 14, 2021. DOI: https://doi.org/10.1186/s43074-021-00038-w
[21] Agrawal, G.P., "Nonlinear fiber optics." In Nonlinear Science at the Dawn of the 21st Century, pp. 195-211. Berlin, Heidelberg: Springer Berlin Heidelberg, 2000.
[22] Hu, D.J.J., Humbert, G., Dong, H., Zhang, H., Hao, J. and Sun, Q., "Review of specialty fiber-based Brillouin optical time domain analysis technology", In Photonics 8(10), 421. MDPI, 2021. DOI: https://doi.org/10.3390/photonics8100421
[23] Hoshino, K., Saito, D., Endo, Y., Hasegawa, T. and Tanaka, Y., "Brillouin gain spectrum manipulation using multifrequency pump and probe for slope-assisted BOTDA with wider dynamic range", Applied Physics Express 15(2), 022009, 2022. DOI: https://doi.org/10.35848/1882-0786/ac4a0c
[24] Endo, M., Kimura, S., Tani, S. and Kobayashi, Y., "Coherent control of acoustic phonons in a silica fiber using a multi-GHz optical frequency comb", Communications Physics 4(1), 73, 2021. DOI: https://doi.org/10.1038/s42005-021-00581-9
[25] Shirazi, M.R., "Fluctuations in Brillouin shifts and acoustic-phonon speeds in multiwavelength Brillouin Raman erbium-doped fiber laser generation", Applied Optics 59(32), 10102-10106, 2020. DOI: https://doi.org/10.1364/AO.409805
[26] Wang, W., Yu, Y., Geng, Y. and Li, X., "Measurements of thermo-optic coefficient of standard single mode fiber in large temperature range", In 2015 International Conference on Optical Instruments and Technology: Optical Sensors and Applications, 9620, 234-239. SPIE, 2015. DOI: https://doi.org/10.1117/12.2193091
[27] Law, P.C., Liu, Y.S., Croteau, A. and Dragic, P.D., "Acoustic coefficients of P 2 O 5-doped silica fiber: acoustic velocity, acoustic attenuation, and thermo-acoustic coefficient", Optical Materials Express 1(4), 686-699, 2011. DOI: https://doi.org/10.1364/OME.1.000686
[28] Le Parc, R., Levelut, C., Pelous, J., Martinez, V. and Champagnon, B., "Influence of fictive temperature and composition of silica glass on anomalous elastic behaviour", Journal of Physics: Condensed Matter 18(32), 7507, 2006. DOI: http://doi.org/10.1088/0953-8984/21/7/079802
[29] Dragic, P. and Ballato, J., "A brief review of specialty optical fibers for Brillouin-scattering-based distributed sensors", Applied Sciences 8(10), 1996, 2018. DOI: https://doi.org/10.3390/app8101996
[30] Bao, Y. and Chen, G., "Temperature-dependent strain and temperature sensitivities of fused silica single mode fiber sensors with pulse pre-pump Brillouin optical time domain analysis", Measurement Science and Technology 27(6), 065101, 2016. DOI: https://doi.org/10.1088/0957-0233/27/6/065101