[1] Zalevsky, Zeev, and Ibrahim Abdulhalim, Integrated nanophotonic devices, (Elsevier, 2014).
[2] E. Ghahremanirad, S. Olyaee, and M. Hedayati, “The influence of embedded plasmonic nanostructures on optical absorption of perovskite solar cells”, Photonics, Vol. 6, AN. 37, pp. 1-8, 2019.
[3] Hung-Yu Lin, Yang Kuo, and Cheng-Yuan Liao, and Yean-Woei Kiang. “Surface plasmon effects in the absorption enhancements of amorphous silicon solar cells with periodical metal nanowall and nanopillar structures”, Optics Express 20(1), A104-18,2012.
[4] Ghahremanirad, S. Olyaee, and A. Abdollahi Nejand, P. Nazari, V. Ahmadi, and K. Abedi, “Improving the performance of perovskite solar cells using kesterite mesostructure and plasmonic network”, Solar Energy, Vol. 169, pp. 498-504, 2018.
[5] E. Ghahremanirad, S. Olyaee, and A. Abdollahi.Nejand, V. Ahmadi, and K. Abedi, “Hexagonal array of mesoscopic HTM based perovskite solar cell with embedded plasmonic nanoparticles”, Physica Status Solidi B: Basic Solid State Physics, Vol. 255, No. 3, pp. 1-8, 2018.
[6] E. Ghahremanirad, A. Bou, S. Olyaee, and J. Bisquert, “Inductive loop in the impedance response of perovskite solar cells explained by surface polarization model”, Journal of Physical Chemistry Letters, Vol. 8, No. 7, pp. 1402-1406, 2017.
[7] Yang Wang, Tianyi Sun, Trilochan Paudel, Yi Zhang, Zhifeng Ren, and Krzysztof Kempa, Metamaterial-Plasmonic Absorber Structure for High Efficiency Amorphous Silicon Solar Cells”, Nano Lett., 2 (1) (2012), pp 440–445.
[8] S. Olyaee and F. Farhadipour, “Investigation of hybrid Ge QDs/ Si nanowires solar cell with improvement in cell efficiency”, Optica Applicata, Vol. 48, No. 4, pp. 633-645, 2018.
[9] S. Olyaee, F. Farhadipour, and E. Ghahremanirad, “Enhanced photovoltaic properties of InAs/GaAs quantum-dot intermediate-band solar cells by using cylindrical quantum dots”, Digest Journal of Nanomaterials and Biostructures, Vol. 13, No. 1, pp. 271-277, 2018.
[10] Vora, Ankit, “Increasing solar energy conversion efficiency in thin film hydrogenated amorphous silicon solar cells with patterned plasmonic silver nano-disk array”, 2015.
[11] Akimov, Yuriy A., and Wee Shing Koh. “Design of plasmonic nanoparticles for efficient subwavelength light trapping in thin-film solar cells”, Plasmonics 6, No. 1 (2011): 155-161.
[12] Wen, Long, Fuhe Sun, and Qin Chen. “Cascading metallic gratings for broadband absorption enhancement in ultrathin plasmonic solar cells.” Applied Physics Letters 104, no. 15 (2014): 151106.
[13] Reineck, Philipp, George P. Lee, Delia Brick, Matthias Karg, Paul Mulvaney, and Udo Bach. “A solid‐state plasmonic solar cell via metal nanoparticle self‐assembly.” Advanced Materials 24, No. 35 (2012): 4750-4755.
[14] Le Lay, G., B. Aufray, C. Léandri, H. Oughaddou, J-P. Biberian, P. De Padova, M. E. Dávila, B. Ealet, and A. Kara. “Physics and chemistry of silicene nano-ribbons.” Applied Surface Science 256, No. 2 (2009): 524-529.
[15] Warner, Marvin G., and James E. Hutchison. “Linear assemblies of nanoparticles electrostatically organized on DNA scaffolds.” Nature Materials 2, No. 4 (2003): 272.
[16] Lee, Dong Yun, Jonathan T. Pham, Jimmy Lawrence, Cheol Hee Lee, Cassandra Parkos, Todd Emrick, and Alfred J. Crosby. “Macroscopic nanoparticle ribbons and fabrics.” Advanced materials 25, No. 9 (2013): 1248-1253.
[17] Zhang, Debao, Xifeng Yang, Xuekun Hong, Yushen Liu, and Jinfu Feng. “Aluminum nanoparticles enhanced light absorption in silicon solar cell by surface plasmon resonance.” Optical and Quantum Electronics 47, No. 6 (2015): 1421-1427.
[18] Bozhevolnyi, S. I. Plasmonic Nanoguides and Circuits, (Singapore: Pan Stanford, 2009).
[19] G. Barbarino, R. Asmundis, G. Rosa, C. Maximiliano Mollo, S. Russo, and D. Vivolo, “Silicon Photo Multipliers Detectors Operating in Geiger Regime: An Unlimited Device for Future Applications, Photodiodes”, IntechOpen, DOI: 10.5772/21521 (2011).