Barabasi, A.L. and Stanley, H.E.; Fractal Concepts in Surface Growth, Cambridge University Press (1995).
Escudero, C.; “Geometrical approach to tumor growth” Mathematical Institute: University of Oxford
(2006).
Esudero, C.; “Stochastic models for tumoral growth” Phys. Rev. E 73: (2006) 1-4.
Kapral, R., Livi R., Oppo G., and Politi A.; “Dynamics of complex interfaces” Phys. Rev. E 49: (1994)
2009-2022.
Bell D.R., Wein L.M; “Analysis and comparison of multimodal cancer treatments” IMA J. Math. Appl.
Med. Biol 18: (2001) 343-376.
Bell D.R., Wein L.M; “Sequencing surgery, radiotherapy and chemotherapy: insights from a mathematical
analysis” Breast Cancer Res. Treat 74: (2002) 279-286.
Powathil G., Kohandel M., Sivaloganathan S., Oza A., and Milosevic M.; “Mathematical modeling of
brain tumors: effects of radiotherapy and chemotherapy” Phys. Med. Biol. 52: (2007) 3291-3306.
Sachs, R.K., Hlathky, L.R., and Hahnfeldt, P.; “Simple ODE model of tumor growth and anti-angiogenic
or radiation treatment” Math. Comput. Model 33: (2001) 1297-305.
Laird, A.; “Dynamics of tumor growth” Brit. J. Cancer 18, (1964) 490-502.
Kohandel, M., Sivaloganathan, S., and Oza, A.; “Mathematical modeling of ovarian cancer treatments:
Sequencing of surgery and chemotherapy” J. Theor. Biol 242: (2006) 62-68.
Murray, J.D.; Mathematical Biology I and II Interdisciplinary Applied Mathematics, 3nd ed., Berlin:
Springer (2003).
Halphin-Healy, T. and Zhang Y.; ”Kinetic roughening phenomena. Stochastic growth” Directed polymers
and all that Phys. Rep 254: (1995) 215-414.
Kohandel, M., Kardar, M., Milosevic, M., and Sivaloganathan, S.; “Dynamics of tumor growth and
combination of anti-angiogenic and cytotoxic therapies” Phys. Med. Biol 52: (2007) 3665-3677.
Garcia-Ojalvo, J., and Sancho, J.M.; “Noise in spatially extended systems” Springer, New York (1999)