The Effects of Structural Parameters on the Confinement Factor and Single mode Region

Authors

Abstract

In this paper the dependence of single mode region of air-silica microstructures on the structural parameters, the period and diameter of air hole array have been studied theoretically. The calculations have been done for three kinds of microstructures with one, two or three holes missing in the center of fiber by using scalar effective index method. The structures which we call them MOF1, MOF3 and MOF7 respectively have different single mode region. It is shown that MOF1 microstructure has larger single mode region. Optical confinement factor of the MOF1, MOF3 and MOF7 structures have been calculated versus different values of hole diameter, d, and period , and two values of wavelength =0.98 & 1.55 m. Numerical calculations show that MOF7 microstructure has larger confinement factor so this structure is more suitable for optical power transmission. Confinement factor increases with increasing the ratio of d/.

Keywords


[1]   J. Xu, J. Song, C. Li, and K. Ueda; “Cylindrically Symetrical Hollow Fiber; Optics Communications 182 (2000) 343-348.
[2]     L. Michaille, C. R. Bennett, D. M. Taylor, and T. J. Shepherd; “Multicore Photonic Crystal Fiber Lasers for High Power/Energy Applications”; IEEE J. Selected Topics in Quantum Electron. 15 (2009) 328- 336.
[3]   K. Furusawa, T. Kogure, J. K. Sahu, J. H. Lee, T. M. Monro, and D. J. Richardson, “Efficient Low-Threshold Lasers Based on an Erbium-Doped Holey Fiber”; IEEE Photonics Lett. Tech. 17 (2005) 25-27.
[4]  A. M. Zheltikov; “Holey Fibers”; Physics-Uspekhi 43 (2000) 1125-1136.
[5]      A. Cucinotta, F. Poli, S. Selleri, L. Vincetti, and M. Zoboli; “Amplification Properties of Er3+-Doped Photonic Crystal Fibers”; IEEE J. of Lightwave Tech. 21 (2003) 782-788.
[6]  A. Mafi, J. V. Moloney, D. Kouznetsov, A. Schülzgen, S. Jiang, T. Luo, and N. Peyghambarian; “A Large-Core Compact High-Power Single-Mode Photonic Crystal Fiber Laser”; IEEE Photonics Lett. Tech. 17 (2004) 2595- 2597.
[7]    T. A. Birks, P. J. Roberts, P. St. J. Russell, D. M. Atkin, and T. J. Shepherd; “Full 2-D photonic bandgaps in silica/air structures”; Electron. Lett. 31 (1995) 1941-1943.
[8]  M. Bottacini, F. Poli, A. Cucinotta, and S. Selleri; “Modeling of Photonic Crystal Fiber Raman Amplifiers; IEEE, J. of Lightwave Tech. 22 (2004) 1707-1713.
[9]   J. Arriaga; “Effective Index Model and Guided Modes in a Photonic Crystal Fiber”; Physics status solidi (B) 242, No. 9 (2003) 1868-1871.
[10]   J. C. Knight, T. A. Birks, P. St. J. Russell, and D. M. Atkin; “All-silica single-mode optical fiber with photonic crystal cladding”; Optics. Lett. 21 (1996) 1547-1549.
[11]      H. Li, A. Mafi, A. Schulzgen, L. Li, V. L. Temyanko, N. Peyghambarian and J. V. Moloney; “Analysis and Design of Photonic Crystsl Fibers Based On an Improved Effective-Index Method”; IEEE J. of Lightwave Tech. 25 (2007) 1224-1230.
[12]       F. Bahloul, M. Zghal, R. Chatta, and R. Attia; “Modelling Microstructured Optical Fibers”; Control, Communications and Signal Processing, First International Symposium (2004) 647 – 650.
[13]    T. A. Birks, D. Mogilevtser, J. C. Knight, P. St. J. Russell, and J. Broeng; “The Analogy between Photonic Crystal Fibers and Step Index Fibers”; Optical Fiber Communication Conference, and the International Conference on Integrated Optics and Optical Fiber Communication, OFC/IOOC '99, 4 (1999) 114-116.
[14]    W. Chen, J. Li, S. Li, and H. Li; “Study on Single Mode Photonic Crystsl Fibers in Wide Wavelength Range”; Chinese Optics Letters 5 (2007) 383-3857.
[15]      J. Broeng; “Photonic Crystal Fibers: A New Class of Optical Waveguides”, Optical Fiber Tech. 5 (1999) 305-330.
[16]   J. C. Knight, T. A. Birks, and P. St. J. Russel; “Properties of Photonic Crystal Fiber and The Effective Index Model”; J. Opt. Soc. Am. A 15 (1998) 748-752.