Thermal properties of multicrystal graphene

Document Type : Research Paper

Authors

Abstract

Single-layer graphene as a semiconductor without band gap and linear
energy spectrum is a two dimensional system of massless Dirac fermions
which is of crucial importance towards understanding of unusual electronic
properties. In this work, the thermal conductivity of polycrystalline graphene
in the low and high temperature ranges, (0-100) K and (250-450) K
respectively, has been theoretically investigated. Using a model to take into
account the contribution of three branches of acoustic phonons due to
scattering on grain boundaries, point defects, sample borders (for low
temperatures) and the umklapp processes of phonon-phonon scattering (for
high temperatures), the thermal conductivity is calculated. We have shown
that at low temperatures, due to the reduction of phonon-phonon scattering,
the temperature dependence of thermal conductivity is as  and at
high temperature it behaves as 􀜶which is in agreement
with recent reported data.

Keywords


[1]  X. Li, W. Cai, J. An, S. Kim, J. Nah, D. Yang, R. Piner, A. Velamakanni,
I. Jung, E. Tutuc, S. K. Banerjee, L. Colombo, and R. S. Ruoff; Science 324, No. 5932 (2009) 1312–1314.
[2]  K. S. Kim, Y. Zhao, H. Jang, S. Y. Lee, J. M. Kim, K. S. Kim, J. H. Ahn, P. Kim, J.Y. Choi, and B.H. Hong; Nature 457, No. 7230 (2009) 706–710.
[3]  A. Reina, X. Jia, J. Ho, D. Nezich, H. Son, V. Bulovic, M.S. Dresselhaus, and J. Kong; Nano Lett. 9, No.1 (2009) 30–35.
[4]  S. Bae, H. K. Kim, Y. Lee, X. Xu, J. S. Park, Y. Zheng, J. Balakrishnan,
T. Lei, H. R. Kim, and Y. I. Song; Nat Nanotechnol. 5, No. 8 (2010) 574– 578.
[5]    D. L. Nika and A. A. Balandin; J. Phys. Conden. Matter. 24 (2012) 233203.
[6]  J. da Silva Araujo and R. W. Nunes; Phys. Rev. B 81 (2011) 073408.
[7]   P. Y. Huang, C. S. Ruiz-Vargas, A. M. van der Zande, W. S. Whitney,
M. P. Levendorf, J.W. Kevek, S. Garg, J. S. Alden, C.J. Hustedt, Y. Zhu, J. Park, P.L. McEuen, and D.A. Muller; Nature 469 (2011( 389–392.
[8]  K. Kim, Z. Lee, W. Regan, C. Kisielowski, M.F. Crommie, and A. Zettl;
ACS Nano 5 (2011( 2142.
[9]  D.V. Kolesnikov and V.A. Osipov; Euro. Phys. Lett. 100 (2012) 26004.
[10]      A. Turchanin, D. Weber, M. Büenfeld, C. Kisielowski, M.V. Fistul,
K.B. Efetov, T. Weimann, R. Stosch, J. Mayer, and A. Gölzhäuser; ACS Nano 5, No. 5 (2011) 3896–3904.
[11]   W. Cai, A.L. Moore, Y. Zhu, X. Li, S. Chen, and L. Shi; Nano Lett. 10
(2010) 1645–1651.
[12]  R. Grantab, V.B. Shenoy, and R.S. Ruoff; Science 330, No. 6006 (2010) 946-948.
[13]  G. P. Srivastava; “The Physics of Phonons”, Taylor and Francis, Bristol (1990).
[14]    A.F. Mills; “Basic Heat and Mass Transfer”, Prentice Hall, U.S.A. (1999).
[15]  J. Maultzsch, S. Reich, C. Thomsen, H. Requardt, and P. Ordejon; Phys. Rev. Lett. 92 (2004) 075501.
[16]  J.-U. Lee, D. Yoon, H. Kim, S. W. Lee, and H. Cheong; Phys. Rev. B 83
(2011) 081419.
[17]     X. S. Li, Y. W. Zhu, and W. W. Cai; “Transfer of large-area 16rapheme films for high performance transparent conductive electrodes”; Nano Lett. 9, No. 12 (2009) 4359–436.
[18]    A.K. Geim and K.S. Novoselov; “The rise of 17rapheme”; Nature Materials 6, No. 3 (2007) 183–191.
[19]  D.L. Nika, E.P. Pokatilov, A.S. Askerov, and A.A. Balandin; Phys. Rev. B 79 (2009) 155413.
[20]  N. Mounet and N. Marzari; Phys. Rev. 71 (2005) 205214.
[21]  L. Wirtz and A. Rubio; Solid State Commun. 131 (2004) 141-142.
[22]    A.A. Balandin, and K.L. Wang; “Significant decrease of the lattice thermal conductivity due to phonon confinement in a free-standing semiconductor quantum well”; Phys. Rev. B 58 (1998) 1544.
[23]   P. K. Schelling, S. R. Phillpot, and P. Keblinski; J. Appl. Phys. 95, No. 11 (2004) 6082–6091.