Study of effect of coupling geometry in improvement of thermoelectric properties of polyaniline molecular junction

Document Type : Research Paper

Authors

Abstract

In this paper, we investigate thermoelectric properties of polyaniline molecular junction for three different coupling geometries of the coupling of the molecule to the electrodes including para (symmetric), meta and ortho (asymmetric) configurations. The selected electrodes are three dimensional and face center cubic (FCC) similar to the experimental works. The nonequilibrium Green function formalism is used to obtain thermoelectric coefficients in nonlinear response regime. The Hamiltonian of the system is described by tight binding method. The results show, in asymmetric coupling, the electrical conductance and thermal conductance decrease whereas thermopower and figure of merit show better behavior and increase in meta and ortho configurations. Therefore asymmetry in polyaniline molecular junction causes an improvement in thermoelectric efficiency of the junction that is a desirable result for scientists. On the other hand, the oscillating behavior of thermopower indicates the kind of carriers and the place of molecular energy levels relative to the Fermi energy change during the thermal tunneling.

Keywords


[1] H. Iwai, Roadmap for 22 nm and beyond. Microelectronic Engineering 86(7-9),
1520-1528 (2009).
[2] R. Ballardini, V. Balzani, A. Credi, M. T. Gandolfi, and M. Venturi, “Artificial
molecular-level machines: Which energy to make them work?”, Accounts of
Chemical Research 34(6), 445-455 (2001).
[3] Z. L. Wang and J. Song, “Piezoelectric nanogenerators based on zinc oxide
nanowire arrays”, Science, 312(5771), 242-246 (2006).
[4] E. Pop, “Energy dissipation and transport in nanoscale devices”, Nano
Research 3 147-169 (2010).
[5] N. Li, J. Ren, L. Wang, G. Zhang, P. Hänggi, and B. Li, “Colloquium:
Phononics: Manipulating heat flow with electronic analogs and beyond”, Reviews of
Modern Physics 84(3), 1045 (2012).
[6] C. W. Chang, D. Okawa, A. Majumdar, and A. Zettl, “Solid-state thermal
rectifier”, Science 314(5802), 1121-1124 (2006).
[7] M. Ma, H. Liu, J. Xu, Y. Li, and Y. Wan, “Electrochemical polymerization of odihydroxybene
and characterization of its polymers as polyacetylene
derivatives”, The Journal of Physical Chemistry C 111(18), 6889-6896 (2007).
[8] F. Ren, F. Jiang, Y. Du, P. Yang, C. Wang, and J. Xu, “Fabrication of poly (omethoxyaniline)/Pt-M
nanocomposites and their electrocatalytic activities for
methanol oxidation”, Int. J. Electrochem. Sci. 6 5701-5709 (2011).
[9] L. Qin, S. Zhang, J. Xu, B. Lu, X. Duan, D. Zhu, and Y. Huang, “Novel Poly
(ethylene oxide) Grafted Polycarbazole Conjugated Freestanding Network Films via
Anionic and Electrochemical Polymerization”, Int. J. Electrochem. Sci. 8, 5299-
5313 (2013).
[10] F. Pauly, J. K. Viljas, and J. C. Cuevas, “Length-dependent conductance and
thermopower in single-molecule junctions of dithiolated oligophenylene derivatives:
A density functional study”, Physical Review B 78(3), 035315 (2008).
[11] A. Tan, J. Balachandran, S. Sadat, V. Gavini, B. D. Dunietz, S. Y. Jang, and P.
Reddy, “Effect of length and contact chemistry on the electronic structure and
thermoelectric properties of molecular junctions”, Journal of the American
Chemical Society 133(23), 8838-8841 (2011).
[12] R. Yakuphanoglu and B. F. Şenkal, “Electronic and thermoelectric properties of
polyaniline organic semiconductor and electrical characterization of Al/PANI MIS
diode”, The Journal of Physical Chemistry C 111(4), 1840-1846 (2007).
[13] P. Dutta, S. K. Maiti, and S. N. Karmakar, “Multi-terminal electron transport
through single phenalenyl molecule: A theoretical study”, Organic
Electronics 11(6), 1120-1128 (2010).
[14] G. C. Liang, A. W. Ghosh, M. Paulsson, and S. Datta, “Electrostatic potential
profiles of molecular conductors”, Physical Review B 69(11), 115302 (2004).
[15] Y. Asai, “Nonequilibrium phonon effects on transport properties through
atomic and molecular bridge junctions”, Physical Review B 78(4), 045434 (2008).
[16] S. Datta, Electronic transport in mesoscopic systems, Cambridge University
Press (1997).
[17] Y. Meir and N. S. Wingreen, “Landauer formula for the current through an
interacting electron region”, Physical review letters 68(16), 2512 (1992).
[18] M. Dey, S. K. Maiti, and S. N. Karmakar, “Effect of dephasing on electron
transport in a molecular wire: Green’s function approach”, Organic
Electronics 12(6), 1017-1024 (2011).
[19] M. Bagheri Tagani and H. Rahimpour Soleimani, “Influence of electronphonon
interaction on the thermoelectric properties of a serially coupled double
quantum dot system”, Journal of Applied Physics 112(10), 103719 (2012).
[20] Z. Golsanamlou, S. I. Vishkayi, M. B. Tagani, and H. R. Soleimani,
“Thermoelectric properties of metal/molecule/metal junction for different lengths of
polythiophene”, Chemical Physics Letters 594 51-57 (2014).