Study of electronic transmission coefficient of a benzene molecule in the presence of Hubbard interaction

Document Type : Research Paper

Authors

1 Shahrekord Univesity

2 Shahrekord university

3 Shahrekord University

Abstract

In this paper, we calculate the electronic transmission coefficient of a benzene ring connected to two metallic leads via the para and meta contacts in the presence of electron-electron interaction (Hubbard model). For this purpose, we use the Green’s function technique and the nearest neighbor tight-binding approach. Then, we obtain the electronic conductance as a function of energy by a numerical self-consistent method due to the shape of interaction. The result show that in the presence of the electron-electron interaction, the positions of peaks, dips and Fano resonances which are appeared in the conductance spectra will be shifted. Moreover, the value of the conductance at zero energy strongly depends on variation of the Hubbard parameter value; which leads to the metal-insulator transition in the meta case. Considering of the electron - electron interaction within the self-consistent approach gives a realistic viewpoint with respect to the models in which this interaction is considered by the mean field approximation.

Keywords


[1] G. Joachim, J. K. Ginzewski and A. Aviram, “Electronics using hybridmolecular
and mono-molecular devices”, Nature 408 541-548 (2000).
[2] A. Nitzan, “Electron transmission through molecules and molecular interfaces”,
Annu. Rev. Phys. Chem. 52 681-750 (2001).
[3] A. Nitzan and M. A. Ratner, “Electron transport in molecular wire junctions”,
Science 300 1384-1389 (2003).
[4] J. R. Heath and M. A. Ratner, “Molecular electronics”, Phys. Today 56 43-49
(2003).
[5] F. Chen, J. Hihath, Z. Huang, X. Li, and N. J. Tao, “Measurement of singlemolecule
conductance”, Annu. Rev. Phys. Chem. 58 535-564 (2007).
]6] A. Aviram and M. A. Ratner, “Molecular rectifiers”, Chem. Phys. Lett. 29 277-
283 (1974).
[7] M. A. Reed, C. Zhou, C. J. Muller, T.P. Burgin, and J. M. Tour, “Conductance of
a molecular junction”, Science 278 252-254 (1997).
[8] G. Cuniberti, G. Fagas and K. Richter (eds), Introducing Molecular Electronics,
Springer, Berlin (2005).
[9] H. Rabani and M. Mardaani, “Exact analytical results on electronic transport of
conjugated polymer junctions: renormalization method”, Solid State Commun.
152 235-239 (2012).
[10] N. Tao, “Electron transport in molecular junctions”, Nat. Nanotech. 1 173-181
(2006).
[11] S. Yeganeh, M. A. Ratner, M. Galperin and A. Nitzan,” Transport in State
Space: Voltage-Dependent Conductance Calculations of Benzene-1,4-dithiol”,
Nano Lett. 9 1770-1774 (2009).
[12] L. Venkataraman, J. E. Klare, C. Nuckolls, M. S. Hybertsen, and M. L.
Steigerwald, “Dependence of single-molecule junction conductance on
molecular conformation”, Nature 442 904-907 (2006).
[13] A. V. Danilov, S. Kubatkin, S. Kafanov, P. Hedegård, N. S. Hansen, K. M.
Poulsen and T. Bjørnholm, “Electronic transport in single molecule junctions: 
control of the molecule-electrode coupling through intramolecular tunneling
barriers”, Nano Lett. 8 1-5 (2008).
[14] S. K. Maiti, “Magnetic response in mesoscopic Hubbard rings: A mean field
study”, Solid State Commun. 150 2212-2217 (2010).
[15] A. Goker, “Tunable Fano resonance in a ferromagnetic diatomic molecular
transistor”, phys. status solidi (b) 247 129-133 (2010).
[16] S. Datta, Quantum transport: atom to transistor, Cambridge University Press
(2005).
[17] M. Mardaani and H. Rabani, “A solvable model for electronic transport of a
nanowire in the presence of effective impurities”, Superlattice. Microst. 59
155-162 (2013).
[18] D. S. Fisher and P. A. Lee, “Relation between conductivity and transmission
matrix”, Phys. Rev. B 23 6851(R) (1981).
[19] D. Nozaki, H. M. Pastawski, and G. Cuniberti1, “Controlling the conductance
of molecular wires by defect engineering”, New J. Phys. 12 063004 (2010).