Measurement of Carbon Ion Temperature in Tokamak IR-T1 Plasma Using Passive Spectroscopy

Document Type : Research Paper

Authors

1 PhD Student, Department of Nuclear Physics, Faculty of Basic sciences, University of Mazandaran, Mazandaran, Iran.

2 Professor, Department of Nuclear Physics, Faculty of Basic sciences, University of Mazandaran, Mazandaran, Iran.

3 Plasma Physics Research Center, Science & research Branch, Islamic Azad University, Tehran, Iran.

4 Assiatant Professor, Plasma Physics Research Center, Science & research Branch, Islamic Azad University, Tehran, Iran

Abstract

The study of ionic impurities present in tokamak plasma is an essential tool for studying plasma behavior and determining its various parameters such as temperature, electron density and plasma flow rate. For this purpose, high resolution optical spectroscopy system was installed on the Tokamak IR-T1 to measure the carbon-ion impurity temperature in the plasma. By processing the emission spectral lines recorded by the spectrometer, the location of the spectral line corresponding to the carbon impurity is estimated, and the effective width of the carbon spectral line is determined by matching a Gaussian function to the experimental data. Given the effective width of the carbon spectrum line, its doppler broadening and consequently the carbon ionic impurity temperature are calculated. Carbon CIII ion temperature is obtained about . The experimental impurity temperature is comparable to the results of ISTTOK and COMPASS tokamaks.

Keywords


[1] Zastrow, K. D., J. M. Adams, Yu Baranov, P. Belo, L. Bertalot, Jerzy H. Brzozowski, C. D. Challis et al. "Tritium transport experiments on the JET tokamak." Plasma physics and controlled fusion 46, no. 12B (2004).
[2] Koubiti, M., T. Nakano, L. Godbert-Mouret, Yannick Marandet, J. Rosato, and R. Stamm. "Diagnostics of JT-60U divertor plasmas by Stark–Doppler broadening of carbon spectral lines." Journal of Nuclear Materials 415, no. 1 (2011).
[3] Zweben, S. J., and S. S. Medley. "Visible imaging of edge fluctuations in the TFTR okamak." Physics of Fluids B: Plasma Physics 1, no. 10 (1989).
[4] Naydenkova, D. I., J. Stöckel, V. Weinzettl, D. Šesták, and J. Havlicek. "Spectroscopic measurements on the COMPASS tokamak." WDS’12 Proceedings of Contributed Papers Part II—Physics of Plasmas and Ionized Media (2012).
[5] Gomes, R. B., C. A. F. Varandas, J. A. C. Cabral, E. Sokolova, and S. Reyes Cortes. "High dispersion spectrometer for time resolved Doppler measurements of impurity lines emitted during ISTTOK tokamak discharges." Review of Scientific Instruments 74, no. 3 (2003): 2071-2074.
[6] Weinzettl, V., I. ġuran, J. Zajac, and V. Piffl. "Edge plasma biasing experiments on the CASTOR tokamak: spectroscopic investigation and microwave measurements." Czechoslovak journal of physics 53, no. 10 (2003).
[7] Paknezhad, A., M. Ghoranneviss, R. Arvin, and S. Mohammadi. "Approaches on Measurements of the Shafranov Parameter and Plasma Displacement in Tokamaks." Journal of Nuclear and Particle Physics 3, no. 4 (2013).
 [8] Naydenkova, D. I., F. Janky, V. Weinzettl, J. Stockel, D. Sestak, T. Odstrcil, J. Ghosh, R. Gomes, and T. Pereira. "Measurements of ion temperature in the edge plasma of the COMPASS tokamak." In WDS, vol. 11, pp. 233-236 (2011).
 [9] Ghorashi, S, and Mahdavi, M. "Broadening effects on opacity calculation of CH plasmas." Physics of Plasmas 24, no. 2 (2017).
[10] Gomes, R. B., C. A. F. Varandas, J. A. C. Cabral, E. Sokolova, and S. Reyes Cortes. "High dispersion spectrometer for time resolved Doppler measurements of impurity lines emitted during ISTTOK tokamak discharges." Review of Scientific Instruments 74, no. 3 (2003).
[11] Avantes Enlightening Spectroscopy. The Netherlands, Europe, http;// www.avantes .com (2015).
[12] Fantz, U. "Basics of plasma spectroscopy." Plasma sources science and technology 15, no. 4 (2006).
[13] Kunze HJ. "Introduction to plasma spectroscopy." Springer Series on Atomic, Optical, and Plasma Physics; ISBN 978-3-642-02233-3; Springer Heidelberg Dordrecht London New York, p.128-133 (2009 Sep 18).
 [14] Hutchinson, IH. "Principles of Plasma Diagnostics, second edition." New York: Cambridge University Press, p.109 (2002).
[15] Vidal CR, Cooper J, Smith EW. "Hydrogen Stark-broadening tables." The Astrophysical Journal Supplement Series.; 25:37 (1973 Jan).
[16] Kamio S, Cao Q, Abe K, Sakumura M, Suzuki N, Watanabe TG, Ishiguchi K, Imazawa R, Yamada T, Inomoto M, Takase Y. "Multipoint spectroscopy measurement of spherical tokamak heating by magnetic reconnection in UTST." Plasma and Fusion Research.;6:2402033 (2011 Jul 12).
[17] Scherrer P. "Estimation of the size and internal structure of colloidal particles by means of röntgen." Nachr. Ges. Wiss. Göttingen.; 2:96-100(1918).
[18] Lerner, J. M., and A. Thevenon. "The optics of spectroscopy." Jobin-Yvon Optical Systems/Instrumentss SA (1988).
[19] Daltrini, A. M., M. Machida, and M. J. R. Monteiro. "Vacuum ultraviolet and visible spectroscopy diagnostics on the NOVA-UNICAMP tokamak." Brazilian journal of physics 31, no. 3: 496-501 (2001).
 [20] Khorshid, P., Ghoranneviss, M., Razavi, M., Saboohi, S., Mollai, M., Hojabri, A., Mohammadi, S. "Overview of Experimental Studies on IR-T1 Tokamak." No. INIS-XA--08N0893, (2008). 
 [21] Menmuir, S., " Visible spectroscopic diagnostics: Application and development in fusion plasmas"., PHD Thesis, Albanova University Center, KTH. Roslagstullsbacken 21: S-106 91 Stockholm: Sweden, p;18(2007).