Calculation of Energy Levels of Quantum Wires with V-shaped Cross-Section and Variable Width

Document Type : Research Paper

Author

Assistant Professor, Department of Physics, Faculty of Science, Payame Noor University, Tehran, Iran

Abstract

In this work, we have analytically calculated the energy spectrum of electrons and holes of quantum wires with V-shaped cross-sections and variable widths. To modify the wire structure, we have used the equations proposed by Inoshita et al. We introduce a new effective potential according to the shape of the cross-section of this nanowire for solving the Schrodinger equation. Using this proposed effective potential and considering a suitable modified coordinate (mapping coordinate) that enables us to separate two-dimensional wave functions into two one-dimensional equations. we have calculated the wave functions and corresponding eigenvalues of the charge carriers in these nanowires. We find that by increasing the curvature of the top of the quantum wire (b) the energy of the charge carriers will be decreased. Our results are in good agreement with previous research. The results of this work are valuable for studying the physical properties of V-shaped nanowires that require analytical computation.

Keywords

Main Subjects


[1]     Inoshita T. and Sakaki H. Electronic structure of the ridge quantum wire based on an analytic confinement model, J. App. Phys. 79 269 1996.
[2]     Sadeghi E. and Khordad R. Analytical solution forV-groove quantum wire with an effective potential scheme, Phys. Stat. Sol. B 1, 2005.
[3]     Cingolani R., Sogava F., Arakawa Y., Rinaldi R., Devittorio M., Passaseo A., Taurino A., Catalano M., and Vasanelli L., Micro photoluminescence spectroscopy of vertically stackedInxGa1-xAs/GaAsquantum wires, Phys. Rev B 58 1962, 1998.
[4]     Martinel E., Reinhardt F., Gustafsson A., Biasiol G., and Kapon E. Self-ordering and confinement in strained InGaAs/AlGaAs V-groove quantum wires grown by low-pressure organometallic chemical vapor deposition, Appl. Phys. Lett. 72 701, 1998.
[5]     Kapplet M., Grundmann M., Krost A., Turck V. and Bimberg D. InGaAs quantum wires grown by low pressure metalorganic chemical vapor deposition on InP V‐grooves, Appl. Phys. Lett. 68 3596, 1996.
[6]     Turck V., Stier O., Heinrichsdorff F., Grundmann M. and Bimberg D, Electron quantum wires in type II single heterostructures on nonplanar substrates, Appl. Phys. Lett. 67 1712, 1995.
[7]     Gustafsson A., Reinhardt F., Biasol G., and Kapon E., Low‐pressure organometallic chemical vapor deposition of quantum wires on V‐grooved substrates, Appl. Phys. Lett. 95 3673, 1995.
[8]     Wang X. L., Ogura M. and Matsuhata H., Flow rate modulation epitaxy of AlGaAs/GaAs quantum wires on nonplanar substrate, Appl. Phys. Lett. 66 1506, 1995.
[9]     Biasiol G., and Kapon E., Ducmmun Y. and Gustafsson A., Self-ordering of quantum-wire superlattices on V-grooved substrates, Phys. Rev B 57 R9416, 1998.
[10] Ishikawa Y., Shibata N. and Fukatsu S., Creation of [110]-aligned Si quantum wires encompassed by SiO2 using low-energy separation-by-implanted-oxygen on a V-groove patterned substrate1998 Appl. Phys. Lett. 72 2592.
[11] Ammann C., Dupertius M. A., Bockelmann U., and Deveaud B., Electron relaxation by LO phonons in quantum wires: An adiabatic approach Phys. Rev B 55 2420, 1997.
[12] Pescetelli S., Di Carlo A. and Lugli P., Conduction-band mixing in T- and V-shaped quantum wires, Phys. Rev B 56 R1668, 1997.
[13] Saar A., Calderon S., Givant A., Ben-Shalom O., Kapon E. and Caneau C., Energy subbands, envelope states, and intersubband optical transitions in one-dimensional quantum wires: The local-envelope-states approach, Phys. Rev B 54 2675, 1996.
[14] Goldoni G., Rossi F., Molinari E., Fasolino A., Rinaldi R. and Cingolani R., Valence band spectroscopy in V‐grooved quantum wires, Appl. Phys. Lett. 69 2965, 1996.
[15] Rossi F., Molinari E., Coulomb-Induced Suppression of Band-Edge Singularities in the Optical Spectra of Realistic Quantum-Wire Structures, Phys. Rev. Lett. 76 3642, 1996.
[16] Arfken G. Mathematical Methods for Physics, (1985).
[17] Geraldo C. and Geraldo W., Electron and hole states in V-groove quantum wires: an effective potential calculation, Semicond. Sci. Technol. 14 690, 1999.
[18] Zarezadeh M. and Tavasoli M. K., Solution of the Schrödinger equation for a particular form of Morse potential using the Laplace transform, Chinese Phys. C. 33 1-4, 2009.
[19] Sadeghi E. and Khordad R, Lashinzadegan A. International conference on nanotechnology, Iran (2007).