[1] Boyd, R.W., Nonlinear Optics, Academic press, 1992.
[2] Hajiesmaeilbaigi, F.; Razzaghi, H.; Mahdizadeh, M.; Moghaddam, M. R. A.; Ruzbehani, M. “Design and Construction of a 110 W Creen Laser for Medical Application”; OPT LASER TECHNOL. 2011, 43, 1428-1430.
[3] Hopkins, F. K. “Military Laser Applications: Providing Focus to Nonlinear Optics R&D”; OPT PHOTONICS NEWS. 1998, 9, 32.
[4] Klein, M. W.; Wegener, M.; Feth, N.; Linden, S. “Experiments on Second-and Third-Harmonic Generation from Magnetic Metamaterials”; OPT EXPRESS. 2007, 15, 5238-5247.
[5] Klein, M. W.; Enkrich, C.; Wegener, M.; Linden, S. “Second-Harmonic Generation from Magnetic Metamaterials”; SCIENCE. 2006, 313, 502-504.
[6] Miller; Robert C. “Optical Second Harmonic Generation in Piezoelectric Crystals”; APPL PHYS LETT. 1964, 5, 17-19.
[7] Bergman Jr, J. G.; McFee, J. H.; Crane, G. R. “Pyroelectricity and Optical Second Harmonic Generation in Polyvinylidene Fluoride Films”; APPL PHYS LETT. 1971, 18, 203-205.
[8] Koechner, W., Solid-State Laser Engineering, SPRINGER. 2006.
[9] Driscoll, T. A.; Hoffman, H. J.; Stone, R. E.; Perkins, P. E. “Efficient Second-Harmonic Generation in KTP Crystals”; J OPT SOC AM. B 3, 1986, 5, 683-686.
[10] Fan, T. Y.; Huang, C. E.; Hu, B. Q.; Eckardt, R. C.; Fan, Y. X.; Byer, R. L.; Feigelson, R. S. “Second Harmonic Heneration and Accurate Index of Refraction Measurements in Flux-Grown KTiOPO4”; APPL OPTICS. 1987, 26, 2390-2394.
[11] Brown, A. J.; Bowers, M. S.; Kangas, K. W.; Fisher, C. H. “High-energy, High-Efficiency Second-Harmonic Generation of 1064-nm Radiation in KTP”; OPT LETT. 1992, 17, 109-111.
[12] Ruikun, Wu. “High-Efficiency and Compact Blue Source: Intracavity Frequency Tripling by Using LBO and BBO Without the Influence of Birefringence”; APPL OPTICS. 1993, 32, 971-975.
[13] Yuan, X.; Wang, J.; Chen, Y.; Wu, Y.; Qi, Y.; Sun, M.; Wang, Q. “Laser at 532 nm by Intracavity Frequency-Doubling in BBO”; J SEMICOND. 2017, 38, 064007.
[14] Zhang, Zilong, Qiang, Liu, and Mali Gong. “32.5 mJ 4.6 ns 532 nm Q-switched Nd:YAG Laser at 500 Hz”; APPL OPTICS.2013, 52, 2735-2738.
[15] Dudley, D. R.; Mehl, O.; Wang, G. Y.; Allee, E. S.; Pang, H. Y., Hodgson, N. “Q-switched Diode-Pumped Nd:YAG Rod Laser With Output Power of 420W at 532nm and 160W at 355nm”; P SOC PHOTO-OPT INS: Vol. 7193, INT SOC PHOTO-OPT, 2009.
[16] Bhandari, R.; T. Taira. “0.5 MW peak power, kHz repetition rate at 266 nm using cut Nd: YAG microchip laser”; CLEO: IEEE, 2014.
[17] Zhu, S. “A LD side-pumped deep ultraviolet laser at 266 nm by using a Nd: YAG/Cr4+: YAG/YAG composite crystal”; OPT LASER TECHNOL. 63, 24-28, 2014.
[18] Kumar, S. “High-power, high-repetition-rate performance characteristics of β-BaB 2 O 4 for single-pass picosecond ultraviolet generation at 266 nm”; OPT EXPRESS. 23.21, 28091-28103, 2015.
[19] Yang, H. “Improved beam profile of a 266 nm deep ultraviolet laser employing a multi-mirror-reflected cavity”; LASER PHYS LETT. 13.4, 045002, 2016.
[20] Chai, X. “Noncritical phase-matched fourth harmonic generation properties of traditional grown large-size DKDP crystal”; OPT COMMUN. 392, 162-166, 2017.
[21] Liu, Q. “High-energy single longitudinal mode 1 ns all-solid-state 266 nm lasers” APPL PHYS B. 89.2-3, 155-158, 2007.
[22] Sutherland, R.L., Handbook of Nonlinear Optics, CRC press. 2003.
[23] Polyanskiy, M. N. “Refractive Index Database”; https://refractiveindex.info, 2019.
[24] Beijing Gospel OptoTech Co. “Crystal, Laser and Optics”; http://www.bjgot.com /index _home.html, 2019.
[25] Chen, C.; Wu, B.; Jiang, A.; You, G.; “A New Type Ultraviolet SHG Crystal â-BaB2O”; SCI SINICA. 1985, B 28, 235-243.
[26] Drnitriev, V. G.; Gurzadyan, G. G.; Nikogosyan, D. N. “Handbook of Nonlinear Optical Crystals”; Vol. 64, SPRINGER SERIES OPTI. 1999.
[27] Armstrong, J.; Bloembergen, N.; Ducuing, J.; Pershan, P. “Interactions Between Light Waves in a Nonlinear Dielectric”; PHYS REV. 1962, 127, 1918.
[28] Kruglik, G., N.; Kondratyuk, Shagov, A. A.; “Efficient Fourth Harmonic Generation of Nd: YAG Laser in DKDP Crystals”; ICONO 2001: P SOC PHOTO-OPT INS. Vol. 4751, INT SOC PHOTO-OPT. 2002, 137-144.
[29] Sabaeian, M.; Mousave, L.; Nadgaran, H.; “Investigation of Thermally-Induced Phase Mismatching in Continuous-Wave Second Harmonic Generation: a Theoretical Model”; OPT EXPRESS. 2010, 18, 18732-18743.
[30] Mohammad-Rezaee, M.; Sedaghat Jalil abadi, F.; Motazedian, A.; Sabaian, M. “Investigation of Temperature-Induced Phase Mismatching Effect in Efficiency and Temperature Band Width of Second Harmonic Generation in Double-Pass KTP Type II Crystal”; IRAN CONF PHOTO-OPT . 2012, 253-258.
[31] Yap, Y. K.; Inagaki, M.; Nakajima, S.; Mori, Y.; Sasaki, T. “High-Power Fourth-and Fifth-Harmonic Generation of a Nd: YAG Laser by Means of a CsLiB6O10”; OPT LETT. 1996, 21, 1348-1350.
[32] Zheng, J.; Zhao, S.; Wang, Q.; Zhang, X.; Chen, L. “Influence of Thermal Effect on KTP type-II Phase-Matching Second-Harmonic Generation”; OPT COMMUN. 2001,199, 207-214.
[33] DeSalvo, R.; Hagan, D. J.; Sheik-Bahae, M.; Stegeman, G.; Van Stryland, E. W.; Vanherzeele, H. “Self-Focusing and Self-Defocusing by Cascaded Second-Order Effects in KTP”; OPT LETT. 1992, 17, 28-30.
[34] Zhang, L.; Zhang, F.; Xu, M.; Wang, Z.; Sun, X, “Rapid Growth of a Large Size, Highly Deuterated DKDP Crystal and Its Efficient Noncritical Phase Matching Fourth-Harmonic-Generation of a Nd: YAG Laser”; RSC ADV. 2015, 5, 74858-74863.
[35] Eimerl, D. “High Average Power Harmonic Generation”; IEEE J QUANTUM ELECT. 1987, 23, 575-592.
[36] Nikogosyan, D. N., Nonlinear Optical Crystals, SPRINGER, 2005.
[38] Knittel, J.; Kung, A. H. “39.5% Conversion of Low-Power Q-switched Nd: YAG Laser Radiation to 266 nm by Use of a Resonant Ring Cavity”; OPT LETT. 1997, 22, 366-368.