Two-qutrit Nonorthogonal Systems and their Entanglement Dynamics under XX Hamiltonian and DM Interaction

Document Type : Research Paper

Authors

1 Assistant Professor, Department of Physics, Faculty of Science, Shahid Chamran University of Ahvaz, Ahvaz, Iran.

2 Associate Professor, Department of Physics, Faculty of Science, Shahid Chamran University of Ahvaz, Ahvaz, Iran

3 .Sc. in Physics, Assistant Professor, Department of Physics, Faculty of Science, Shahid Chamran University of Ahvaz, Ahvaz, Iran.

Abstract

In this work, we study entanglement dynamics in a two-qutrit systemunder the XX Hamiltonian, in the presence of Dzyaloshinskii-Moriya interaction and external magnetic field. Using the generalized concurrence as an entanglement measure, their entanglement dynamics are investigated by numerical computation and the appropriate graphs as a function of the parameters are depicted. The generalized concurrence measure changes for different values of interaction and non-phase coherence parameters can be investigated. It is observed that the entanglement dynamics variations range of these states is changed between maximum entanglement or no entanglement in qutrit systems, depending on the choice of the parameters involved.

Keywords


[1] Audretsch J., Entangled World: The Fascination of Quantum Information and Computation, WILLY-VCH, Verlag GmbH, (2006).
[2] Jafarpour M. and Ashrafpour M., “An Entanglement Study of Superposition of Qutrit Spin-Coherent States”; Journal of Sciences 22, No.2 ,165-169(2011).
[3] Sabour A., Jafarpour M.and Ashrafpour M., “Dynamics of localizable entanglement in a qutrit chain with Dzyaloshinskii-Moriya interaction”, Quantum Inf. Process. 12, 1287-1297(2013).
[4] Jafarpour M.and Sabour A., “A useful strong lower bound on two-qubit concurrence”, Quantum Inf. Process, DOI 10.1007/s11128-011-0288-0 (2011).
[5] Naji A. and Jafarpour M., “Squeezing and entanglement in multi-qutrit systems”, Quantum Inf. Process. DOI 10.1007/s11128-013-0574-0 (2013).
[6] S. Bose, “Quantum Communication through an Unmodulated Spin Chain”, Phys. Rev. Lett. 91, 207901(2003).
[7] Cerf N. J., Bourennane M., A. Karlsson, and N. Gisin, “Security of quantum key distribution using d-Level systems”, Phys. Rev. Lett 88, 127902 (2002).
[8] Durt T., Cerf N. J., Gisin N., and Zukowski M., “Security of quantum key distribution with entangled qutrits”, Phys. Rev. A 67, 012311 (2003).
[9] Jafarpour M.  and Ashrafpour M., Entanglement dynamic of a two-qutrit system under DM intraction and the relevance of the inetial state, Quantum Inf. Process. 12, 761-772 (2012).
[10] Anderson P. W., “Antiferromagnetism theory of superexchange interaction”, Phys. Rev. 79, 350 (1950).
[11] Aristov D. N, Maleyev S. V., “Spin chirality induced by the Dzyaloshinskii- Moriya interaction and polarized neutron scattering”, Phys. Rev. B 62, R751-R754 (2000).
[12] Rungta P., Buzek V., Caves C. M., Hillery M., and Milburn G. J., “Universal state inversion and concurrence in arbitrary dimensions”, Phys. Rev. A 64, 042315 (2001).
[13] Rungta P., Caves C. M., “I-concurrence and tangle for isotropic states”, arXiv: quant-ph/0208002v1 (2002).
[14] Huang Y., Qiu D., “Concurrence vectors of multipartite states based on coefficient matrices”, Quantum Inf. Process. 11, 235-234(2011).
[15] Dzialoshinski I., “A Thermodynamic theory of weak ferromagnetism of antiferromagnetics”, J. Phys. Chem. Solid 4, 241-255(1958).
[16] Moriya T., “New mechanism of anisotropic superexchange interaction”, Phys. Rev. Lett4, 228-230 (1960).
[17] Moriya T., “Anisotropic Superexchange Interaction and Weak Ferromagnetism”, Phys. Rev. 120, 91–98(1960).
[18] Radcliffe J. M., “Some properties of coherent spin states”, J. Phys. A 4,313(1971).