Investigation of Structural, Electronic and Thermodynamic Properties of LaRuSi Nano-layer Using Density Functional Theory

Document Type : Research Paper

Author

Assistant Professor. Department of physics, Mobarakeh Branch , Islamic Azad University. Mobarakeh. Isfahan, Iran.

Abstract

< p >In this paper, using the first-principle procedure, the effective Hubbard parameters of La and Ru atoms are calculated. Then, the structural, electronic and thermodynamic properties of LaRuSi nano-layer using the density functional theory are investigated in the presence of spin-orbit coupling making use of Wien2k code. The generalized gradient approximation (GGA) and generalized gradient approximation plus Hubbard parameter (GGA+U) are used for exchange-correlation potential. The calculated results show that this nano-layer is a non-magnetic metal. The electron densities of states (DOS) show that the major contribution in DOS around the Fermi energy comes from d orbital of Ru surface atom. The calculated results of the linear coefficient of specific heat of electrons show that the contribution of the Ru atom located on the nano-layer surface is higher than the Ru atom located on the central layer. The thermodynamic properties of this nano-layer such as bulk modulus, Debye temperature, specific heat at constant pressure and volume and thermal expansion coefficient are calculated using quasi-harmonic Debye model at 0 K to 1000 K temperatures and 0 GPa to 10 GPa pressures. The specific heat at constant volume at low temperature is cubically dependent on temperature and at high temperatures, it reaches the classical constant limit 74 (J/molK).

Keywords

Main Subjects


[1] Gupta S. and Suresh K. G., Review on magnetic and related properties of RTX compounds, J. Alloys. Compd. 618 (2015) 562-606.
[2] Welter R., Venturini G., Malaman B. and Ressouche E., Crystallographic data and magnetic properties of new RTX compounds (R=La-Sm, Gd; T=Ru, Os; X=Si, Ge). Magnetic structure of NdRuSi, J. Alloys. Compd. 202 (1993) 165-172.
[3] Chevalier B., Gaudin E., Tencé S., Malaman B., Rodriguez Fernandez J., André G. and Coqblin B., Hydrogenation inducing antiferromagnetism in the heavy-fermion ternary silicide CeRuSi, Phys. Rev. B 77 (2008) 014414.
[4] Krajc M. and Hafner J., Intermetallic Compounds as Selective Heterogeneous Catalysts: Insights from DFT, ChemCatChem. 8 (2016) 34.
[5] Li J., Wu J., Wang H., Lu Y., Ye T., Sasase M., Wu X., Kitano M., Inoshita T. and Hosono H., Acid-durable electride with layered ruthenium for ammonia synthesis: boosting the activity via selective etching, Chem. Sci. 10 (2019) 5712.
[6] Wu J., Li J., Gong Y., Kitano M., Inoshita T. and Hosono H., Intermetallic Electride Catalyst as a New Platform for Ammonia Synthesis, Angew. Chem., Int. Ed. 58 (2019) 825.
[7] Kohn W., Sham L. J., Self-Consistent Equations Including Exchange and Correlation Effects, Phys. Rev. 140 A (1965)1133.
[8] Blaha P., Schwarz K., Madsen G. K. H., Kvasnicka D., Luitz J., WIEN2k (An augmented plane wave plus local orbitals program for calculating crystal properties).University of Technology, Vienna/Austria (2014).
[9] Perdew J. P., Burke K., Ernzerhof M., Generalized Gradient Approximation Made Simple, Phys. Rev. Lett. 77 (1996)3865.
[10] Perdew J. P., Burke K., Ernzerhof M., Generalized Gradient Approximation Made Simple, Phys. Rev. Lett. 78 (1997)1396.
[11] Anisimov V.I., Aryasetiawan F., Lichtenstein A., First-principles calculations of the electronic structure and spectra of strongly correlated systems: the LDA+ U method, J. Phys. Condens. Matter 9 (1997) 767.
[12] Madsen G. K. H., Novak P., Charge order in magnetite. An LDA+U study, Europhys. Lett.69 (2005) 777-783.
[13] Madsen G., Novak P., Notes about constraint LDA calculations to determine U, in: WIEN2k-Textbooks (2007).
[14] Anisimov V. I. and Gunnarsson O., Density-functional calculation of effective Coulomb interactions in metals, Phys. Rev. B 43 (1991) 7570.
[15] Blanco M. A., Francisco E. and Luana V., GIBBS: isothermal-isobaric thermodynamics of solids from energy curves using a quasi-harmonic Debye model, Comput. Phys. Commun 158 (2004) 57-72.
[16] Otero-de-la-Roza A., Abbasi-Perezand D. and Luana V. C., Gibbs2: A new version of the quasiharmonic model code. II. Models for solid-state thermodynamics, features and implementation, Comput. Phys. Commun 182 (2011) 2232-2248.
[17] Blanco M. A., Pendás A. M. N., Francisco E., Recio J. M. and Franco R., Thermodynamical properties of solids from microscopic theory: applications to MgF2 and Al2O3,, J. Mol. Struct (Theochem) 368 (1996) 245-255.
[18] Djermouni M., Belhadj M., Kacimi S. and Zaoui A., AB initio study of electronic and magnetic structure of intermetallic RE5Ge3 compounds, J. Mod. Phys. Lett. B, Vol. 25, No. 32 (2011) 2427–2438.
[19] Moniri S. M., Nourbakhsh Z. and Mostajabodaavati M., The first principles calculation of structural, electronic and magnetic properties of MnXY(X=Ru, Rh and Y=Ga, Ge, Sb) alloys, Mod. Phys. Lett. B, Vol. 25, No. 26 (2011) 2079–2090.
[20] Ashcroft N.W., Mermin N.D., Solid states physics, Saunders College Publishing, Orlando, Florida, (1976) 615.
[21] Debye P., Zur Theorie der spezifischen Warmen, Ann. Phys. 39 (1912) 789.
[22] Petit A. T., Dulong P. L., Rechemhes sur quelques points importants de la theorie de la chaieur, Ann. Chim. Phys. 10 (1819) 395.