Thermodynamic Investigation of Nanosecond Nanobubble Creation due to Metallic Nanoparticle Excitation by Pulsed Laser

Document Type : Research Paper

Author

Assistant Professor, Physics Group, Tafresh University, Tafresh, Iran

Abstract

< p >Plasmonic production of the nanoparticles is an interesting field of research. A significant part of the plasmonic nanoparticle generation process is based on the creation of the nanobubbles by pulsed laser irradiation in the liquid medium.  Here, the generation of Ag nanoparticles produced in vicinity of the nanobubbles created by pulsed femtosecond laser is investigated. This investigation is performed on theoretical and computer simulation procedures. Our simulation in comparison with empirical results in previous reports has an acceptable agreement. We investigate the parameters such as: relationship between specific heat of the nanoparticles and temperature, variation of the nanoparticles’ volume expansion with the laser fluence, the temperature dependence of the nanoparticle average size and the ratio of nanoparticle/nanobubble volume versus the laser fluences. In the simulation we utilize the equations with spherical symmetry, the separation of the time and space parts and eventually solve the coupled equations in the Laplace space.

Keywords

Main Subjects


[1]     Perner, M., Bost, P., Lemmer, U., Von Plessen, G., Feldmann, J., Becker, U., Mennig, M., Schmitt, M. and Schmidt, H., 1997." Optically Induced Damping of the Surface Plasmon Resonance in Gold Colloids ". Physical Review Letters, 78, pp. 2192.
[2]     Link, S. and El-Sayed, M. A., 2000. “Shape and size dependence of radiative, non-radiative and photothermal properties of gold nanocrystals”. International Reviews in Physical Chemistry,19, pp. 409.
[3]     Hodak, J. H., Henglein, A. and Hartland, G. V., 2000. “Electron-phonon coupling dynamics in very small (between 2 and 8 nm diameter) Au nanoparticles”.  Journal of Chemical Physics, 112 5942.
[4]     Del Fatti, N., Voisin, C., Achermann, M., Tzortzakis, S., Christofilos, D., Christofilos, D. and Valleé, F. 2000. “Nonequilibrium electron dynamics in noble metals”. Physical Review B, 61, pp. 16956.
[5]     Pitsillides, C. M., Joe, E. K., Wei, X., Anderson, R. R. and Lin, C. P. 2003. “Selective cell targeting with light-absorbing microparticles and nanoparticles”, Biophysical Journal, 84, pp. 4023.
[6]     Hirsch, L. R., Stafford, R. J., Bankson, J. A., Sershen, S. R., Rivera, B., Price, R. E., Hazle, J. D., Halas, N. J. and West, J. L. 2003. “Nanoshell-mediated near-infrared thermal therapy of tumors under magnetic resonance guidance”. Proceeding of National Academy of Sciences of USA. 100, pp.13549.
[7]     Lapotko, D. O., Lukianova, E. and Oraevsky, A. A. 2006. “Selective laser nano-thermolysis of human leukemia cells with microbubbles generated around clusters of gold nanoparticles”. Lasers in Surgery and Medicine, 38, pp. 631.
[8]     Jain, P. K., El-Sayed, I. H. and El-Sayed, M. A. 2007. “Au nanoparticles target cancer”. Nanotoday, 2, pp. 18.
[9]     Tong, L., Zhao, Y. T., Huff, B.  Hansen, M. N., Wei, A. and   Cheng, J. X.2007. “Gold Nanorods Mediate Tumor Cell Death by Compromising Membrane Integrity”. Advanced Materials, 19, pp. 3136.
[10] Yao, C., Qu, X., Zhang, Z., Hüttmann, G. and Rahmanzadeh, R. 2009. “Influence of laser parameters on nanoparticle-induced membrane permeabilization”. Journal of biomedical optics,14, pp. 054034.
[11] Francois, L. “Optical limitation induced by gold clusters: Mechanism and efficiency”. 2001. Physical Chemistry Chemical Physics, 3, pp. 4965.
[12] Hu, M. and Hartland, G. V. “Heat dissipation for Au particles in aqueous solution:  relaxation time versus size”. 2002., Journal of Physical Chemistry B,106, 7029.
[13] Ge, Z., Cahill, D. G. and Braun, P. V. “AuPd metal nanoparticles as probes of nanoscale thermal transport in aqueous solution”.  2004., Journal of Physical Chemistry B, 108, 18870.
[14] Hu, M., Petrova, H. and Hartland, G. V.2004. “Investigation of the properties of gold nanoparticles in aqueous solution at extremely high lattice temperatures”. Chemical Physics Letters, 391, 220.
[15] Neumann, J. and Brinkmann, R.2005. “Boiling nucleation on melanosomes and microbeads transiently heated by nanosecond and microsecond laser pulses”. Journal of Biomedical Optics, 10, pp. 24001.
[16] Debenedetti, P. G., 1996. Metastable Liquids: Concepts and Principles. Princeton University Press, Princeton, USA.
[17] Glod, S., Poulikakos, D., Zhao, Z., and Yadigaroglu, G. 2002. “An investigation of microscale explosive vaporization of water on an ultrathin Pt wire”. International Journal of Heat and Mass Transfer, 45, 367.
[18] Avedisian, C. T. 1985. “The homogeneous nucleation limits of liquids”. Journal of Physical and Chemical Reference Data, 14, 695.
[19] Siems, A., Weber, S. A. L., Boneberg, J.  and Plech, A.2011. “Thermodynamics of nanosecond nanobubble formation at laser-excited metal nanoparticles”. New Journal of Physics, 13, 043018.
[20] Carslaw, H. S. and Jaeger, J. C., 2001. Conduction of Heat in Solids. Oxford University Press, Oxford, UK.
[21] Kittle, C., 2005. Introduction to Solid State Physics. 8th Ed., John Wiley & Sons, USA.
[22] Allmen, M., Blatter, A., 1995. Laser-Beam Interactions with Materials. Springer, Berlin, Germany.