Review Paper: Quantum Information and Computation with Rydberg Atoms

Document Type : Review Paper

Author

Institute for Quantum Optics and Quantum Information of the Austrian Academy of Sciences, Innsbruck, Austria, Department of Physics, Sharif University of Technology, Tehran, Iran

Abstract

Highly excited Rydberg atoms are providing strong and controllable atomic interactions ideal for quantum technology with neutral atoms and photons. In this review article, the significant properties of Rydberg atoms and their scaling with principal numbers are discussed in detail. In addition, the application of laser-excited Rydberg atoms in neutral atom quantum computation is reviewed. This review article discusses, also, the application of Rydberg polaritons in quantum optics devices including single-photon sources, photonic gates, and transistors.

Keywords

Main Subjects


[1] Deutsch D., Proc. R. Soc. Lond. A 400, 97 (1985).
[2]  Sho P. W., SIAM J. Comput.  2, 1484 (1997).
[3] Grove L. K., Phys. Rev. Lett. 7, 325 (1997).
[4] Feynman R. P., Int. J. Theor. Phys.  21, 467 (1982).
[5] Lloyd S., Science 273, 1073 (1996).
[6] Brown K. L., W. J. Munro, and V. M. Kendon., Entropy 12, 2268 (2010).
[7] Simon C., Nature Photonics 11, 678 (2017).
[8] Wehner S., Elkouss D., Hanson R., Nature 362, 6412,(2018).
[9] Meter V., Rodney Quantum Networking. Hoboken: Wiley, 127 (2014).
[10] Bennett C. H.  and Brassard G., Quantum cryptography: Public key distribution and coin tossing. In Proceedings of IEEE International Conference on Computers, Systems and Signal Processing, volume 175, 8 (1984).
[11] Kómár, P., Kessler, E. M.; Bishof, M.; Jiang, L.; Sørensen, A. S.; Ye, J.; Lukin, M. D. "A quantum network of clocks"Nature Physics10, 582 (2014).
[12] Gottesman D., Jennewein T., Croke S., "Longer-Baseline Telescopes Using Quantum Repeaters". Physical Review Letters109, 070503 (2012).
[13] Döscher C, Keyl M - Fluctuation and Noise Letters 2, 125 (2002).
[14] Bennett C. H.; Brassard, Gilles "Quantum cryptography: Public key distribution and coin tossing". Theoretical Computer Science, 560, 7 (2014).
[15] Lunghi, T., Kaniewski, J., Bussières, F., Houlmann, R., Tomamichel, M., Kent, A., Gisin, N., Wehner, S., Zbinden, H.  "Experimental Bit Commitment Based on Quantum Communication and Special Relativity”, Physical Review Letters111, 18 (2013).
[16] Wang, Ming-Qiang, Wang, Xue, Zhan, Tao "Unconditionally secure multi-party quantum commitment scheme" (PDF). Quantum Information Processing17, 2 (2018).
[17] Ladd T. D., Jelezko F., Laflamme R., Y. Nakamura, C. Monroe, and J. L. O’Brien. Nature 464، 45 (2010); Kjaergaard M., et al. "Superconducting qubits: Current state of play." Annual Review of Condensed Matter Physics 11, 369 (2020);
B. Iulia, S. Ashhab, and F. Nori. "Natural and artificial atoms for quantum computation." Reports on Progress in Physics 74, 104401(2011);
Flamini, Fulvio, Nicolo Spagnolo, and Fabio Sciarrino. "Photonic quantum information processing: a review." Reports on Progress in Physics 82, 016001(2018).
[18] Jaksch D., Cirac J.I., Zoller P., Rolston S.L., R. Cote, and M.D. Lukin, Phys. Rev. Lett. 85، 2208 (2000).
[19] Saffman M., Walker T. G., and Mølmer K., Rev. Mod. Phys. 82, 2313 (2010).
[20] Barredo D, Lienhard V, de Leseleuc S, Lahaye T and Browaeys A Nature 561، 79 (2018).
[21] Ripka F, Kubler H, Low R and Pfau T, Science 362, 446 (2018).
[22] Kazimierczuk T., et. al, Nature 514, 343 (2014).
[23] Saman M., Walker T. G., and Mølmer K., Rev. Mod. Phys. 82, 2313 (2010);
[24] Khazali M., Heshami K., Simon C., Phys. Rev. A 91, 030301(R) (2015);        
[25] Khazali M., Murry C., Pohl T., Phys. Rev. Lett. 123, 113605 (2019); Firstenberg O, Adams C S and Hofferberth S, J. Phys. B 49 152003 (2016); B. He, A. V. Sharypov, J. Sheng, C. Simon, and M. Xiao, Two-Photon Dynamics in Coherent Rydberg Atomic Ensemble, Phys. Rev. Lett. 112, 133606 (2014); D. Paredes-Barato and C. S. Adams, All-Optical Quantum Information Processing Using Rydberg Gates, Phys. Rev. Lett. 112, 040501 (2014).
[26] Khazali M., Lau H. W., Humeniuk A., Simon C.,
[27] Khazali M., Phys. Rev. A 98, 043836 (2018).
[28] Khazali M., Rydberg quantum simulator of topological insulators, arXiv 2101.11412 (2021
[29] Khazali M., Rydberg Noisy-Dressing and applications in making soliton-molecules and droplet quasi-crystals, arXiv:2007.01039 (2020); Maucher F., Henkel N., Saffman M., W. Krlikowski, S. Skupin, and T. Pohl, Rydberg-induced solitons: three- dimensional self-trapping of matter waves, Phys. Rev. Lett. 106, 170401 (2011).
[30] Henkel N., Cinti F., Jain P., Pupillo G., and Pohl T., Supersolid Vortex Crystals in Rydberg-Dressed Bose- Einstein Condensates, Phys. Rev. Lett. 108, 265301 (2012); I. Seydi, S. H. Abedinpour, R. E. Zillich, R. Asgari, B. Tanatar, Rotons and Bose condensation in Rydberg- dressed Bose Gases, arXiv:1905.01643 (2019).
[31] Khazali M., “Applications of Atomic Ensembles for Photonic Quantum Information Processing and Fundamental Tests of Quantum Physics”, Ph.D thesis, University of Calgary, (2016); I. I. Beterov, I. I. Ryabtsev, D. B. Tretyakov, and V. M. Entin, Phys. Rev. A 79, 052504 (2009); R. Low et al., J. Phys. B: Atom. Mole. Opt. 45 (2012); C. Vaillant, PhD thesis, Durham University (2014).
[32] Saman M.  and Walker T. G., Phys. Rev. A 72, 022347 (2005).
[33] Jaksch D., J.I. Cirac, P. Zoller, S.L. Rolston, R. Cote, and M. D. Lukin, Phys. Rev. Lett. 85, 2208 (2000).
[34] Lukin M. D., Fleischhauer M., Cote R., L. M. Duan, D. Jaksch, J. I. Cirac, and P. Zoller, Phys. Rev. Lett. 87, 037901 (2001).
[35] Muller M., Lesanovsky I., Weimer H., Buchler H. P., and Zoller P., Phys. Rev. Lett. 102, 170502 (2009).
[36] Isenhower L., Saman M., and Mølmer K., Quant. Info. Pro. 10, 755 (2011).
[37] Saman M., T. G. Walker, and K. Mølmer, Rev. Mod. Phys. 82, 2313 (2010).
[38] Isenhower L.  E. Urban, X. L. Zhang, A. T. Gill, T. Henage, T. A. Johnson، T. G. Walker، and M. Saman، Phys. Rev. Lett. 104، 010503 (2010).
[39] Wilk T., A. Gaetan, C. Evellin, J. Wolters, Y. Miroshnychenko, P. Grangier, and A. Browaeys، Phys. Rev. Lett. 104، 010502 (2010).
[40] Saffman M, J. Phys. B 49 202001(2016).
[41] Beterov I I, Ryabtsev I I, Tretyakov D B and Entin V M Phys. Rev. A 79 052504 (2009).
[42] Petrosyan D., Motzoi F., M. Saffman, and K. Mølmer, Phys. Rev. A 96, 042306 (2017).
[43] Khazali M. and Mølmer K., Phys. Rev. X 10, 021054 (2020).
[44] Levine H., A. Keesling, A. Omran, H. Bernien, S. Schwartz, A. S Zibrov, M. Endres, M. Greiner, V. Vuletic, and M. D Lukin. Physical review letters 121, 123603 (2018).
[45] Bernien H., S. Schwartz, A. Keesling, H. Levine, A. Omran, H. Pichler, S. Choi, A. S. Zibrov, M. Endres, M. Greiner, V. Vuletić, and M. D. Lukin, Probing Many-Body Dynamics on a 51-Atom Quantum Simulator, Nature (London) 551, 579 (2017).
[46] Omran A. et al., Generation and Manipulation of Schrödinger Cat States in Rydberg Atom Arrays, Science 365, 570 (2019).
[47] Lienhard V., S. de Leseleuc, D. Barredo, T. Lahaye, A. Browaeys, M. Schuler, L. P. Henry, and A. M. Läuchli, Observing the Space- and Time-Dependent Growth of Correlations in Dynamically Tuned Synthetic Ising Models with Antiferromagnetic Interactions, Phys. Rev. X 8, 021070 (2018).
[48] Zhang S., F. Robicheaux, and M. Saffman, MagicWavelength Optical Traps for Rydberg Atoms, Phys. Rev. A 84, 043408 (2011).
[49] Piotrowicz M. J., M. Lichtman, K. Maller, G. Li, S. Zhang, L. Isenhower, and M. Saffman, Two-Dimensional Lattice of Blue-Detuned Atom Traps Using a Projected Gaussian Beam Array, Phys. Rev. A 88, 013420 (2013).
[50] Nogrette F., H. Labuhn, S. Ravets, D. Barredo, L. Beguin, A. Vernier, T. Lahaye, and A. Browaeys, Single-Atom Trapping in Holographic 2D Arrays of Microtraps with Arbitrary Geometries, Phys. Rev. X 4, 021034 (2014).
[51] Xia T., M. Lichtman, K. Maller, A. W. Carr, M. J. Piotrowicz, L. Isenhower, and M. Saffman, Randomized Benchmarking of Single-Qubit Gates in a 2D Array of Neutral-Atom Qubits, Phys. Rev. Lett. 114, 100503 (2015).
[52] Zeiher J., R. van Bijnen, P. Schauß, S. Hild, J.-y. Choi, T. Pohl, I. Bloch, and C. Gross, Many-Body Interferometry of a Rydberg-Dressed Spin Lattice, Nat. Phys. 12, 1095 (2016).
[53] Cooper A., J. P. Covey, I. S. Madjarov, S. G. Porsev, M. S. Safronova, and M. Endres, Alkaline-Earth Atoms in Optical Tweezers, Phys. Rev. X 8, 041055 (2018).
[54] Norcia M. A., Young A. W., and A. M. Kaufman, Microscopic Control and Detection of Ultracold Strontium in Optical-Tweezer Arrays, Phys. Rev. X 8, 041054 (2018).
[55] Hollerith S., J. Zeiher, J. Rui, A. Rubio-Abadal, V. Walther, T. Pohl, D. M. Stamper-Kurn, I. Bloch, and C. Gross, Quantum Gas Microscopy of Rydberg Macrodimers, Science 364, 664 (2019).
[56] Saskin S., Wilson J. T., Grinkemeyer B., and Thompson J. D., Narrow-Line Cooling and Imaging of Ytterbium Atoms in an Optical Tweezer Array, Phys. Rev. Lett. 122, 143002 (2019).
[57] Wang Y., Kumar A., Wu T. Y., and Weiss D. S., Single-Qubit Gates Based on Targeted Phase Shifts in a 3D Neutral Atom Array, Science 352, 1562 (2016).
[58] Barredo D., Lienhard V., de Leseleuc S., Lahaye T., and Browaeys A., Synthetic Three-Dimensional Atomic Structures Assembled Atom by Atom, Nature (London) 561, 79 (2018).
[59] Isenhower, L., Saffman, M. & Mølmer, K. “Multibit C k NOT quantum gates via Rydberg blockade.” Quantum Inf Process 10, 755 (2011).
[60] Maslov D., Dueck G., El. Lett. 39, 1790 (2003).
[61] Shende V.V., Markov I.L., Qu. Inf. Comput. 9, 0461 (2009).
[62] Brion E., Mouritzen A. S., and Mølmer K., Conditional dynamics induced by new configurations for Rydberg dipole-dipole interactions. Phys. Rev. A، 76:022334، (2007).
[63] Saffman M. and Mølmer K., Efficient multiparticle entanglement via asymmetric Rydberg blockade. Phys. Rev. Lett., 102, 240502 (2009).
[64] Muller M., Lesanovsky I., Weimer H., Buchler H. P., and Zoller P., Mesoscopic Rydberg gate based on electromagnetically induced transparency. Phys. Rev. Lett.، 102:170502، (2009).
[65] Opatrn’y T., and Mølmer K., Spin squeezing and Schrodinger-cat-state generation in atomic samples with Rydberg blockade. Phys. Rev. A 86,02384 (2012).
[66] Isenhower L., Saffman M., and Mølmer K. Multibit CkNOT quantum gates via Rydberg blockade. Quant. Inf. Proc. 10,755 (2011).
[67] Grover L. K., Quantum mechanics helps in searching for a needle in a haystack. Phys. Rev. Lett. 79 ,325 (1997).
[68] Mølmer K, Isenhower L, and Saffman M. "Efficient Grover search with Rydberg blockade." Journal of Physics B: Atomic, Molecular and Optical Physics 44 184016 (2011).
[69] Lvovsky A.I, Sanders B.C., and Tittel W., Nature Photonics 3, 706 (2009).
[70] Hammerer K., Srensen A.S., Polzik E.S., Rev. Mod. Phys 82, 1041 (2010).
[71] Simon C., et al., Eur. Phys. J. D 58, 1 (2010).
[72] Kaviani H., Khazali M., Ghobadi R., Zahedinejad E., Heshami K. and Simon C., New J. Phys. 15 085029 (2013).
[73] Fleischhauer M., and Lukin M. D., Phys. Rev. Lett. 84, 5094 (2000).
[74] Khazali M., and Heshami K., and Simon C., J. of Phys. B: Atomic, Molecular and Optical Physics 50, 215301 (2017).
[75] Bariani F, Dudin Y O, Kennedy T A B and Kuzmich A Phys. Rev. Lett. 108 030501, (2012).
[76] Dudin Y O and Kuzmich A, Science 336, 887 (2012).
[77] Ripka F., et al. "A room-temperature single-photon source based on strongly interacting Rydberg atoms." Science 362, 6413 (2018).
[78] Eisaman, Matthew D., et al. "Invited review article: Single-photon sources and detectors." Review of scientific instruments 82.7 (2011): 071101; Darquie B, Jones M P A, Dingjan J, Beugnon J, Bergamini S, Sortais Y, Messin G, Browaeys A and Grangier P, Science 309 454 (2005); Senellart P, Solomon G and White A, Nature Nano. 12 1026 (2017).
[79] Maxwell D, Szwer D J, Paredes-Barato D, Busche H, Pritchard J D, Gauguet A, Weatherill K J, Jones M P A and Adams C S, Phys. Rev. Lett. 110 103001 (2013).
[80] Peyronel T, Firstenberg O, Liang Q Y, Hofferberth S, Gorshkov A V, Pohl T, Lukin M D and Vuletic V Nature 488 57 (2012(.
[81] Busche H., Huillery P., Ball SW, Ilieva T., Jones MPA, Adams CS, Nature Physics 13, 655.
[82] Walther V., Johne R, Pohl T., Nature communications 9, 1 (2018).
[83] Shapiro J. H., Phys. Rev. A 73, 062305 (2006).
[84] Gea-Banacloche J., Phys. Rev. A 81, 043823 (2010).
[85] Knill E., Laflamme R., Milburn G. J., Nature 409, 46 (2001).
[86] Raussendorf R., H.J. Briegel, Phys. Rev. Lett. 86, 5188 (2001).
[87] Nielsen MA., Rep. Math. Phys. 57, 147 (2006).
[88] Tiarks D, Schmidt-Eberle S, Stolz T, Rempe G and Durr S, Nature Phys. 15, 124 (2019).
[89] Nguyen, Thanh Long, et al.، Physical Review X 8، 011032 (2018).