Research Paper: Synthesis and Investigation of Electrical and Magnetic Properties of Ag/Hf3NiOy Nanocomposites

Document Type : Research Paper

Author

Assistant Professor, Department of Physics, Faculty of Science, Razi University, Kermanshah, Iran

Abstract

In this research, the electric, magnetic and structural behaviors of the Ag/Hf3NiOy nanostructures fabricated using the co-precipitation technique were studied. Since, the fabrication of ordered metallic structure arrays is habitually complex, the mass production of these structures is being prevented. In recent years, researchers have begun to explore materials with inherent DNG property. Metamaterials allow both field components of light to couple to meta-atoms and thus they enable entirely new optical properties and exciting applications.  Ag/Hf3NiOy disordered percolative composites contain conductive nanoparticles. When the concentration of metal nanoparticles in semi-continuous composites is less than the percolation threshold, the real part of the dielectric constant is positive. Also, the permeability constants can be controlled by silver content, meaning that this parameter is adjustable. Interestingly, decreased permeability was observed in samples with higher silver content. When the silver content exceeded the percolation threshold, silver networks were formed due to the interconnection of silver nanoparticles. The effective magnetic properties were due to the magnetic resonance and eddy current of the samples with an external magnetic field. The plasma oscillations of conduction electrons in the samples at a metallic state led to the negative permittivity.

Keywords

Main Subjects


[1] Shalaev W. Cai, V., Optical Metamaterials Fundamentals and Applications, 1st Ed., Springer-Verlag, New York (2010).
[2] Chui S. T., Hu L., Theoretical investigation on the possibility of preparing left-handed materials in metallic magnetic granular composites, Phys. Rev. B 65, 144407 (2002).
[3] Sounas D. L., Kantartzis N. V., Systematic surface wave analysis of the interfaces of composite DNG/SNG media, Optics Express 17, 8513 (2009).
[4] Smith D. R., Padilla W. J., Vier D. C., Nasser S. C. N., Schultz S., Composite Medium with Simultaneously Negative Permeability and Permittivity, Phys. Rev. Lett. 84, 4184 (2000).
[5] Zhang Z. D., Fan R. H., Shi Z. C., Pan S. B., Yan K. L., Sun K. N., Zhang J. D., Liu X. F., Wang X. L., Dou S. X., Tunable negative permittivity behavior and conductor-insulator transition in dual composites prepared by selective reduction reaction, J. Mater. Chem. C 1, 79 (2013).
[6] Zhu J. H., Wei S. Y., Haldolaarachchige N., He J., Young D. P., Guo Z. H., Very large magnetoresistive graphene disk with negative permittivity, Nanoscale 4, 152 (2014).
[7]  Zhao H.,  Kang L.,  Zhou J.,  Zhao Q.,  Li L.,  Peng L.,  Bai Y., Experimental demonstration of tunable negative phase velocity and negative refraction in a ferromagnetic/ferroelectric composite metamaterial, Appl. Phys. Lett. 93, 201106 (2008).

[8] Houck A. A., Brock J. B., Chuang I. L., Experimental Observations of a Left-Handed Material That Obeys Snell’s Law, Phys. Rev. Lett. 90, 137401 (2003).

[9] Anantha Ramakrishna S., Physics of negative refractive index materials, Rep. Prog. Phys. 68, 449 (2005).

[10] Fang N., Lee H., Sun C., Zhang X., Sub-Diffraction-Limited Optical Imaging with a Silver Superlens, Science 308, 534 (2005).

[11] Hou Q., Yan K. L., Fan R. H., Zhang Z. D., Chen M., Sun K., Cheng C. B., Experimental realization of tunable negative permittivity in percolative Fe78Si9B13/epoxy composites, RSC Adv. 5, 9472 (2015).
[12] Zhu J. H., Wei S. Y., Zhang L., Mao Y. B., Ryu J., Mavinakuli P., Karki A. B., Young D. P., Guo Z. H., Conductive Polypyrrole/Tungsten Oxide Metacomposites with Negative Permittivity, J. Phys. Chem. C 114, 16335 (2010).
[13] Liu C. D., Lee S. N., Ho C. H., Han J. L., Hsieh K. H., Electrical Properties of Well-Dispersed Nanopolyaniline/Epoxy Hybrids Prepared Using an Absorption-Transferring Process, J. Phys. Chem. C 112, 15956 (2008).
[14] Li B., Sui G., Zhong W. H., Single Negative Metamaterials in Unstructured Polymer Nanocomposites toward Selectable and Controllable Negative Permittivity, Adv. Mater. 21, 4176 (2009).
[15] Ziolkowski R. W., Erentok A., Metamaterial-based efficient electrically small antennas, IEEE Trans. Antennas Propag. 54, 2113 (2006).
[16] Smith D. R., Padilla W. J., Vier D. C., Nemat-Nasser S. C., Schultz S., Composite Medium with Simultaneously Negative Permeability and Permittivity, Phys. Rev. Lett. 84, 4184 (2000).
[17] Zhou J., Zhang L., Tuttle G., Koschny T., Soukoulis C. M., Negative index materials using simple short wire pairs, Phys. Rev. B 73, 041101R (2006).
[18] Pendry J. B., Negative refraction makes a perfect lens, Phys. Rev. Lett. 85, 3966 (2000).
[19] Pendry J. B., Schurig D., Smith D. R., Controlling electromagnetic fields, Science 312, 1780 (2006).
[20] Parazzoli C. G., Greegor R. B., Li K., Koltenbah B. E. C., Tanielian M., Experimental verification and simulation of negative index of refraction using Snell’s law, Phys. Rev. Lett. 90, 107401 (2003).
[21] Shalaev V. M., Cai W. S., Chettiar U. K., Yuan H. K., Sarychev A. K., Drachev V. P., Kildishev A. V., Negative index of refraction in optical metamaterials, Opt. Lett. 30, 3356 (2005).
[22] Zhang S., Fan W. J., Panoiu N. C., Malloy K. J., Osgood R. M., Brueck S. R. J., Experimental demonstration of near-infrared negative-index metamaterials, Phys. Rev. Lett. 95, 137404 (2005).

[23] Tsakmakidis K. L., Hermann C., Klaedtke A., Jamois C., Hess O., Surface Plasmon polaritons in generalized slab heterostructures with negative permittivity and permeability, Phys. Rev. B 73, 085104 (2006).

[25] Morita T., Kondo K., Hoshino T., Kaito T., Fujita J., Ichihashi T., Ishida M., Ochiai Y., Tajima T., Matsui S., Nanomechanical switch fabrication by focused-ion-beam chemical vapor deposition, J. Vac. Sci. Technol. B 22, 3137 (2004).
[26] Campbell M., Sharp D. N., Harrison M. T., Denning R. G., Turberfield A. J., Fabrication of photonic crystals for the visible spectrum by holographic lithography, Nature 404, 53 (2000).
[27] Ehrfeld W., Lehr H., Deep X-ray-lithography for the production of 3-dimensional microstructures from metals, polymers and ceramics, Radiat. Phys. Chem. 45, 349 (1995).
[28] Kehagias N., Reboud V., Chansin G., Zelsmann M., Jeppesen C., Schuster C., Kubenz M., Reuther F., Gruetzner G., Torres C. M. S., Reverse-contact UV nanoimprint lithography for multilayered structure fabrication, Nanotechnology 18, 175303 (2007).
[29] Cai W., Shalaev V., Optical Metamaterials Fundamentals and Applications, first ed., Springer-Verlag, New York (2010).
[30] Tsutaoka T., Kasagi T., Yamamoto S., Hatakeyama K., Low frequency plasmonic state and negative permittivity spectra of coagulated Cu granular composite materials in the percolation threshold. Appl. Phys. Lett., 102, 181904-181907 (2013).
[31] Yan K. L., Fan R. H., Shi Z. C., Chen M., Qian L., Wei Y. L., Sun K., Li J., Negative Permittivity Behavior and Magnetic Performance of Perovskite La1-xSrxMnO3 at High-frequency, J. Mater. Chem. C2, 1028 (2014).
[32] Depine R. A., Lakhtakia A., A new condition to identify isotropic dielectric-magnetic materials displaying negative phase velocity, Micro. and Opti. Techno. Lette. 41, 315 (2004).