Tousi E. T., Firoozabadi M. M., and Shiva M., "Determination of the thorium potential in Shah-Kooh area in Iran by NAA and comparison with the results of ICP and XRF techniques", Measurement, 90, 20-24 (2016).
[2] Tousi E. T., et al., "Measurement of Percentage Depth Dose and Half Value Layer of the Rhizophora spp. Particleboard Bonded by Eremurus spp. to 60, 80 and 100 kVp Diagnostic X-rays", MAPAN, 33(3), 321-328 (2018).
[3] Pushie M. J., et al., "Elemental and chemically specific X-ray fluorescence imaging of biological systems", Chemical Reviews, 114(17), 8499-8541 (2014).
[4] Beckhoff B., et al., "Handbook of practical X-ray fluorescence analysis". Germany: Springer-Verlag GmbH, Heidelberg. 877 (2007).
[5] Shakhreet B. Z., et al., "Mass attenuation coefficients of natural Rhizophora spp. wood for X-rays in the 15.77–25.27 keV range", Radiation Protection Dosimetry, 135(1), 47-53 (2009).
[6] Marashdeh M. W., et al., "Determining the mass attenuation coefficient, effective atomic number, and electron density of raw wood and binderless particleboards of Rhizophora spp. by using Monte Carlo simulation", Results in Physics, 5, 228-234 (2015).
[7] Aldroobi K. S. A., et al., "Determination of Arsenic and Mercury level in Scalp Hair from a Selected Population in Penang, Malaysia using XRF Technique", Radiation Physics and Chemistry, 91, 9-14 (2013).
[8] Tousi E. T., et al., "Measurement of mass attenuation coefficients of Eremurus-Rhizophora spp. particleboards for X-ray in the 16.63–25.30 keV energy range", Radiation Physics and Chemistry, 103, 119-125 (2014).
[9] Abuarra A., et al., "XRF Technique for the Evaluation of Gum Arabic Bonded Rhizophora spp. Particleboards as Tissue Equivalent Material", International Journal of Applied Physics and Mathematics, 4(3), 201-204 (2014).
[10] Tousi E. T., et al., "Evaluation of the mass attenuation coefficient and Effective Atomic Number of the Eremurus spp. Root in Mammography Energy Range", IOSR Journal of Applied Physics, 9(1), 100-104 (2017).
[11] Marashdeh M. W., "Effect of the LEGe detector collimators on K-series peaks and Compton scattering in XRF analysis using gamma rays", Heliyon, 4(8), e00724 (2018).
[12] Terada K., et al., "Measurements of gamma-ray emission probabilities of 241, 243Am and 239Np", Journal of Nuclear Science and Technology, 53(11), 1881-1888 (2016).
[13] Thompson A. C. and Vaughan D., "X-ray data booklet". Vol. 8, California: Lawrence Berkeley National Laboratory, University of California Berkeley (2001).
[14] Zschornack G., "X-Ray Emission Lines and Atomic Level Characteristics", in Handbook of X-Ray Data, Springer: Heidelberg, Germany. p. 179-609 (2007).
[15] Franck H. and Franck D., in Forensic Engineering Fundamentals, CRC Press: Taylor & Francis Group: Boca Raton, Florida. p. 389 (2013).
[16] Aarts M. P. J. and Rosemann A. L. P., "Towards a uniform specification of light therapy devices for the treatment of affective disorders and use for non-image forming effects: Radiant flux", Journal of affective disorders, 235, 142-149 (2018).
[17] Balanis C. A., "Antenna theory: analysis and design", John Wiley & Sons: New Jersey. p. 37 (2016).
[18] O'Meara J. M., Börjesson J., and Chettle D. R., "Improving the in vivo X-ray fluorescence (XRF) measurement of renal mercury", Applied Radiation and Isotopes, 53(4-5), 639-646 (2000).
[19] Tousi E. T., "Evaluation of levels of some trace metals in Crocus sativus L. and their transfer trend from soil to saffron by using neutron activation analysis (In Persian)", Saffron Agronomy and Technology, 8(3), 377-397 (2020).