Research Paper: All-Optical Bistability in Photonic Crystal Slabs with Coupled Cavity-waveguide Structure

Document Type : Research Paper

Author

Assistant Professor, Photonics and Quantum Technologies Research School, Nuclear Science and Technology Research Institute (NSTRI), Tehran, Iran.

Abstract

In this study, we consider a photonic crystal slab with a triangular lattice, which consists of air holes with a circular shape in a tellurium background on top of a Teflon substrate. In this structure, by enlarging the size of an air hole and infiltrating it with nonlinear polystyrene material we introduce a nonlinear cavity in the mentioned structures. Then, we optimize the geometrical parameters, using the finite-difference time-domain method, to obtain optimal parameters. The results reveal that the triangular lattice represents a nonlinear cavity with a large quality factor (). The mentioned value is much greater than the reported values in similarly designed structures. Then, the designed high-quality cavity is placed between two waveguides symmetrically, and thus a coupled cavity-waveguide structure is created. These waveguides are used to couple light in and out of the cavity. Our investigation shows that by changing the structural parameters such as distance between the cavity and waveguides, the strong coupling between the cavity and waveguides is obtained. In the end, the optical bistability diagram of the structure corresponding to optimum parameters is presented. It is observed that the threshold power is significantly low in the designed structure. In the optical switching phenomenon, the threshold intensity and the response time of the nonlinear materials are very important. The response time of polymers is significantly shorter than that of semiconductors and due to the use of polymers instead of semiconductors in the current study, the obtained results represent some advantages compared with the previously published results.

Keywords

Main Subjects


[1]             Yablonovitch. E, Inhibited spontaneous emission in solid state physics and electronics, Phys. Rev. Lett. 58. 2059-2062. 1987.
[2]             John. S, Strong localization of photons in certain disordered dielectric superlattices, Phys. Rev. Lett. 58. 2486-2489. 1987.
[3]             Anderson. C.M., Giapis. K.P, Larger Two-Dimensional Photonic Band Gaps, Phys. Rev. Lett. 77. 2949-2952.1996.
[4]             Johnson S. G., Fan. S., Villeneuve. P. R., Joannopoulos. J. D., Kolodziejski. A., Guided modes in photonic crystal slabs, Phys. Rev. B. 60. 5751-5758.1999.
[5]             Bravo-Abad. J., Rodriguez. A., Bermel. P., Johnson. S. G., Joannopoulos. J. D., Soljacic. M., Enhanced nonlinear optics in photonic-crystal microcavities, Opt. Express. 15 16161- 16176.2007.
[6]             Melnichuk. M.,  Wood. L. T., Direct Kerr electro-optic effect in noncentrosymmetric materials, Phys. Rev. A. 82. 013821-9.2010.
[7]             Wang Y., Abe. Y., Matsuura. Y., Miyagi. M., Uyama. H., Refractive indices and extinction coefficients of polymers for the mid-infrared region, Appl. optics 37. 7091-7095 (1998).
[8]             Rezaei. B., Fathollahi Khalkhali. T., Soltani Vala. A., Kalafi. M., Absolute band gap properties in two-dimensional photonic crystals composed of air rings in anisotropic tellurium background, Optics Commun. 282. 2861-2869.2009.
[9]             Fathollahi-Khalkhali. T., Bananej. A., Tunable complete photonic band gap in anisotropic photonic crystal slabs with non-circular air holes using liquid crystals, Optics Commun. 369. 79-83.2016.
[10]      Liang. C. Y., Krimm. S., Infrared Spectra of High Polymers. VI. Polystyren, Journal of Polymer Science. XXVII. 241-254.1958.
[11]      Ftahollahi-Khalkhali, T., Shiri, R., Shahrokhabadi, H., Bananej. A., Complete photonic band gap characteristics of two-dimensional Kerr nonlinear plasma photonic crystals, Indian J Phys. 93.  1537–1544.2019.
[12]      Oskooi A. F., Roundy D., Ibanescu. M., Bermel. P., Joannopoulos. J. D., Johnson. S. G., MEEP: A flexible free-software package for electromagnetic simulations by the FDTD method, Comput. Phys. Commun. 181. 687-702.2010.
[13]      Hu. X., Gonga. Q., Liu. Y., Cheng. B., Zhang. D., All-optical switching of defect mode in two-dimensional nonlinear organic photonic crystals, Appl. Phys. Lett. 87. 231111-3.2005.
[14]      Qin. F., Meng. Z.M., Li. Z.Y., Design of all-optical switching component based on pillar-array hybrid nonlinear photonic crystal cavity, J. Opt. Soc. Am. B 29. 2314-2319.2012.
[15]      Almeida. V.R., Lipson. M., Optical bistability on a silicon chip, Opt. Lett. 29. 2387-2389.2004.
[16]      Notomi. M., Shinya. A., Mitsugi. S., Kira. G., Kuramochi. E., Tanabe. T., Optical bistable switching action of Si high-Q photonic-crystal nanocavities, Opt. Express 13. 2678-2687.2005.
[17]      Barclay. P.E., Srinivasan. K., Painter. O., Nonlinear response of silicon photonic crystal microresonators excited via an integrated waveguide and fiber taper, Opt. Express 13 801- 820.2005.
[18]      Tripathy. S. K., Hota. M., Panigrahi. T., A Model for Optical Bistability in a Hybrid Semiconductor Photonic Crystal Structure, IEEE. Photon. Technol. Lett. 21. 772-774.2009.
[19]      Paghousi. R., Fasihi. K., High-contrast controllable switching based on polystyrene nonlinear cavities in 2D hole-type photonic crystals. Optics Commun. 415. 101–106.2018.
[20]      Yang. D., Wang. C., Yuan. W., Wang. B., Yang, Y, Ji. Y., Silicon on-chip side-coupled high-Q micro-cavities for the multiplexing of high sensitivity photonic crystal integrated sensors array, Optics Commun. 374. 1–7. 2016.