[1] Claeys, C., and Simoen, E. Germanium-based technologies: from materials to devices. elsevier, 2011.
[2] Pamplin, B. R. Crystal Growth: International Series on the Science of the Solid State. Elsevier, 2013.
[3] Nada, H. Computer simulations: Essential tools for crystal growth studies, 2018.
[4] Hurle, D. T. Crystal pulling from the melt. Springer Science & Business Media, 2012.
[5] Van den Bogaert, N., and Dupret, F. Dynamic global simulation of the czochralski process i. principles of the method. Journal of crystal growth 171, 1-2 (1997), 65–76.
[6] Volkl, J. Handbook of crystal growth 2b, ch. 14, 1994.
[7] Van den Bogaert, N., and Braet, J. Time-dependent simulation of czochralski growth: application to the production of germanium crystals. In EMC’91: Non-Ferrous Metallurgy-Present and Future. Springer, 1991, pp. 483–491.
[8] Van den Bogaert, N., and Dupret, F. Dynamic global simulation of the czochralski process i. principles of the method. Journal of crystal growth 171, 1-2 (1997), 65–76.
[9] Depuydt, B., Theuwis, A., and Romandic, I. Germanium: From the first application of czochralski crystal growth to large diameter dislocation-free wafers. Materials Science in Semiconductor Processing 9, 4-5 (2006), 437–443.
[10] Tavakoli, M., and Wilke, H. Numerical investigation of heat transport and fluid flow during the seeding process of oxide czochralski crystal growth part 1: non-rotating seed. Crystal Research and Technology: Journal of Experimental and Industrial Crystallography 42, 6 (2007), 544–557.
[11] Singh, S., Desai, D., Singh, A., Sen, S., Gadkari, S., and Gupta, S. Growth of germanium single crystals by czochralski technique. In AIP Conference Proceedings (2012), vol. 1447, American Institute of Physics, pp. 1091–1092.
[12] Kirpo, M. Global simulation of the czochralski silicon crystal growth in ansys fluent. Journal of crystal growth 371 (2013), 60–69.
[13] Van Goethem, L., Van Maele, L. P., and Van Sande, M. Trade-offs using poly versus monocrystalline germanium for infrared optics. In Infrared and Optical Transmitting Materials (1986), vol. 683, International Society for Optics and Photonics, pp. 160–165.
[14] Hibbard, D., Neff, B., Reinbolt, B., Klinger, R., and Stout, M. Critical performance differences of monocrystalline versus polycrystalline germanium for optical applications.
[15] Gao, B. and Kakimoto, K. Three-dimensional analysis of dislocation multiplication in single-crystal silicon under accurate control of cooling history of temperature. Journal of crystal growth, 396:7–13, 2014.
[16] B Gao, Nakano, S., Harada, H., Miyamura, Y. and Kakimoto, K. Three-dimensional analysis of dislocation multiplication during thermal process of grown silicon with different orientations. Journal of Crystal Growth, 474:121–129, 2017.
[17] Honarmandnia, M., Tavakoli, MH, and Sadeghi, H. Global simulation of an rf czochralski furnace during different stages of germanium single crystal growth, part ii: to investigate the effect of the crucible’s relative position against the rf coil on the isotherms, low fields and thermo-elastic stresses. Cryst Eng Comm, 19(3):576–583, 2017.
[18] Ryckmans, Y., Nicodeme, P., and Dupret, F. Numerical simulation of crystal growth: Influence of melt convection on global heat transfer and interface shape. Journal of crystal growth 99, 1-4 (1990), 702–706.
[19] Bhihe, C., Mataga, P., Hutchinson, J., Rajendran, S., and Kalejs, J. Residual stresses in crystal growth. Journal of Crystal Growth 137, 1(1994), 86–90.
[20] Hetnarski, R. B., Eslami, M. R., and Gladwell, G. Thermal stresses: advanced theory and applications, vol. 41. Springer, 2009.
[21] Fang, H., Zheng, L., Zhang, H., Hong, Y., and Deng, Q. Reducing melt inclusion by submerged heater or baffle for optical crystal growth. Crystal Growth and Design 8, 6 (2008), 1840–1848. Hetnarski, R. B., Eslami, M. R., and Gladwell, G. Thermal
[22] Hetnarski, R. B., Eslami, M. R., and Gladwell, G. Thermal stresses: advanced theory and applications, vol. 41. Springer, 2019.
[23] Hetnarski, R. B., and Eslami, R. B. Theory of elasticity and thermal stresses: explanations, problems and solutions. Dordrecht: Springer, 2013.
[24] Boley, B. A., and Weiner, J. H. Theory of thermal stresses. Courier Corporation, 2012.
[25] Dokos, S. Modelling organs, tissues, cells and devices: using Matlab and Comsol multiphysics. Springer, 2017.
[26] Fainberg, J., and Leister, H.-J. Finite volume multigrid solver for thermo-elastic stress analysis in anisotropic materials. Computer Methods in Applied Mechanics and Engineering 137, 2 (1996), 167–174.
[27] Fang, H., Pan, Y., Zheng, L., Zhang, Q., Wang, S., and Jin, Z. To investigate interface shape and thermal stress during sapphire single crystal growth by the cz method. Journal of crystal growth 363 (2013), 25–32v
[28] Hull, D., and Bacon, D. J. Introduction to dislocations. Butterworth-Heinemann, 2001.
[29] Rudolph, P. Handbook of crystal growth: Bulk crystal growth. Elsevier, 2014.
[30] Depuydt, B., Boone, P. M., Union, P., Muys, P. F., Vyncke, D., and Goessens, C. Interferometric characterization of stress birefringence in germanium. In Optical Inspection and Micromeasurements II (1997), vol. 3098, International Society for Optics and Photonics, pp. 559–565.
[31] Billig, E. Some defects in crystals grown from the melt- i. Defects caused by thermal stresses. Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences 235, 1200 (1956), 37–55.
[31] Bennett, D., and Sawyer, B. Single crystals of exceptional perfection and uniformity by zone leveling. Bell System Technical Journal 35, 3 (1956), 637–660.
[33] Belyaev, A., Vasilevskaya, V., and Miselyuk, E. Investigation of the effect of certain factors on formation of dislocations during crystallization and on the dislocation states in germanium monocrystals. SOVIET PHYSICS-SOLID STATE 2, 2 (1960), 208–214.
[34] Tavakoli, M. H., Renani, E. K., Honarmandnia, M., and Ezheiyan, M. Computational analysis of heat transfer, thermal stress and dislocation density during resistively czochralski growth of germanium single crystal. Journal of Crystal Growth 483 (2018), 125–133.
[35] Smirnova, O., Durnev, N., Shandrakova, K., Mizitov, E., and Soklakov, V. Optimization of furnace design and growth parameters for si cz growth, using numerical simulation. Journal of Crystal Growth 310, 7-9 (2008), 2185–2191.