Research Paper: Investigation of Tunable Complete Photonic Band Gap in Two-dimensional Photonic Crystals Composed of Plasma Column in Kerr Nonlinear Dielectric Background

Document Type : Research Paper

Authors

1 Assistant Professor, Photonics and Quantum Technologies Research School , Nuclear Science and Technology Research Institute (NSTRI), Tehran, Iran.

2 Associate Professor, Department of Condensed Matter Physics, Faculty of Physics, University of Tabriz, Tabriz, Iran

Abstract

In this study, the photonic band structure of two-dimensional photonic crystals with square and honeycomb lattices consisting of air holes in the Kerr nonlinear material background has been investigated. We assumed that the holes with different geometrical shapes are filled with plasma. The numerical results based on the finite difference time method show that most of the designed structures represent a complete photonic bandgap with noticeable width at optimum values of structural parameters for low-intensity incident waves, in which the width can be changed through varying the incident light intensity. The calculations show that when the shape of the plasma-filled holes is the same as the shape of the unit cell of the structures, the most change in the total photonic bandgap is visible in the frequency range as  the light intensity of the incident light changes. Furthermore, the maximum width of the photonic gap in these structures was reached , which has increased approximately  in comparison with similar previously studied structures. The obtained result can be used for designing tunable optical devices.

Keywords

Main Subjects


  1. E, Inhibited spontaneous emission in solid state physics and electronics, Phys. Rev. Lett. 58. 2059-2062, 1987.
  2. S, Strong localization of photons in certain disordered dielectric superlattices, Phys. Rev. Lett. 58. 2486-2489, 1987.
  3. C.M., Giapis. K.P, Larger Two-Dimensional Photonic Band Gaps, Phys. Rev. Lett. 77. 2949-2952, 1996.
  4. B., Fathollahi Khalkhali. T., Soltani Vala. A., Kalafi. M., Absolute band gap properties in two-dimensional photonic crystals composed of air rings in anisotropic tellurium background, Optics Commun. 282. 2861-2869, 2009.
  5. Fathollahi Khalkhali. T., Rezaei. B., Kalafi M., Enlargement of absolute photonic band gap in modified 2D anisotropic annular photonic crystals, Optics Commun. 284. 3315-3322, 2011.
  6. B., Fathollahi Khalkhali. T., Kalafi. M., Tunable out-of-plane band gap of two-dimensional anisotropic photonic crystals infiltrated with liquid crystals, Optics Commun. 284. 813-817, 2011.
  7. Kurt. H., Citrin. DS., Annular photonic crystals, Optics express 13. 10316-10326, 2005.
  8. O., Vučković. J., Scherer. A., Defect modes of a two-dimensional photonic crystal in an optically thin dielectric slab, J. Opt. Soc. Am. B. 16, 275-285, 1999.
  9. Guk-Hyun. K., Yong-Hee. L., Highly-Dispersive Guided Modes of Two-Dimensional Photonic Crystal Waveguides, Opt. Soc. Korea. 7, 38-41, 2003.
  10. S., Dou. Y., Li. Q., Jiang. X., Tunable photonic crystal lens with high sensitivity of refractive index, Opt. Express 25, 7112-7120, 2017.
  11. H., Üstün. K., Ayas. L., Study of different spectral regions and delay bandwidth relation in slow light photonic crystal waveguides, Opt. Express 18, 26965-26977, 2010.
  12. H., Mase. A., Dispersion Relation of Electromagnetic Waves in One-Dimensional Plasma Photonic Crystals, J. Plasma Fusion Res. 80, 89–90, 2004.
  13. H,. Uchida. N., Hattori. K., Mase. A., Beaming of Millimeter Waves from Plasma Photonic Crystal Waveguides, Plasma Fusion Res 1 , 021-021, 2006.
  14. W., Zhang. X., Dong. L., Two-dimensional plasma photonic crystals in dielectric barrier discharge, Phys. Plasmas. 17, 113501-7, 2010.
  15. Ue, F., Liu, SB., Zhang, HF. et al. The theoretical analysis of omnidirectional photonic band gaps in the one-dimensional ternary plasma photonic crystals based on Pell quasi-periodic structure. Opt Quant Electron 49, 1-19,
  16. Zhang. H. F.,  Liu. S. B.,  Kong. X. K.,  Zou. L.,  Li. C. Z.,  Bian. B. R., Comment on “Photonic bands in two-dimensional microplasma array. I. Theoretical derivation of band structures of electromagnetic waves” [J. Appl. Phys.101, 073304 (2007)],   Appl. Phys. 110, 026104-3, 2011.
  17. H. F., Liu. S. B., Kong. X. K., Bian. B. R., Guo. Y. N., Dispersion properties of two-dimensional plasma photonic crystals with periodically external magnetic field, Solid State Commun., 152, 1221-1229, 2012.
  18. L., Photonic band structures of two-dimensional magnetized plasma photonic crystals, J. Appl. Phys. 111, 073301-8, 2012.
  19. C., Kong. X. K., Liu. S. B., Band gap extension in honeycomb lattice two-dimensional plasma photonic crystals in the presence of dissipation, Optik 124, 4989– 4993, 2013.
  20. Feng. W., Keqiang. L., Shi. H., Manhong. Y., Shuyuan. X.,Ultra-large omnidirectional photonic band gaps in one-dimensional ternary photonic crystals composed of plasma, dielectric and hyperbolic metamaterial,Optical Materials, 111, 110680-110686, 2021.
  21. Tan H., Jin C., Zhuge L. Wu X., Simulation on the Photonic Bandgap of 1-D Plasma Photonic Crystals, IEEE Transactions on Plasma Science, 46, 539-544, 2018.
  22. H. F., Ding. G. W., Li. H. M., Liu. S. B., Complete photonic band gaps and tunable self-collimation in the two-dimensional plasma photonic crystals with a new structure, Phys. Plasmas 22, 022105-11, 2015.
  23. Fathollahi Khalkhali. T., Bananej. A., Effect of shape of scatterers and plasma frequency on the complete photonic band gap properties of two-dimensional dielectric-plasma photonic crystals, Lett. A. 380, 4092-4099, 2016.
  24. Fathollahi Khalkhali. T., Bananej. A., Full photonic band gap properties of plasma photonic crystals with triangular structure, Mod. Opt. 64, 830-835, 2017.
  25. Khalkhali, T.F., Shiri, R., Shahrokhabadi, H. et al. Complete photonic band gap characteristics of two-dimensional Kerr nonlinear plasma photonic crystals. Indian J Phys 93, 1537–1544, 2019.
  26. R. W., Nonlinear Optics Academic Press 207-228, 2010.
  27. Partha P. Banerje, Nonlinear Optics Theory, Numerical Modeling, and Applications CRC Press314 Pages, 2003.
  28. H. F., The band structures of three-dimensional nonlinear plasma photonic crystals, AIP Advances 8, 015304-12, 2018.
  29. A, Hagness. S. C., Computational Electrodynamics: The Finite-Difference Time-Domain Method, 3rd ed. Norwood, MA: Artech, House, 2005.