Research Paper: Multi-hop Quantum Teleportation Scheme of the 6-Qubit Entangled State by Intermediate Nodes with the Best Efficiency

Document Type : Research Paper

Author

Assistant Professor, Islamic Azad University, Kermanshah Branch, Kermanshah, Iran

Abstract

Quantum multi-hop teleportation is important in the field of quantum communication. In this paper, we proposed a Multi-hop quantum teleportation scheme of the 6-qubit entangled state. In the proposed scheme,  the sender teleports the desired information by transmitting a 6-qubit entangled quantum state to the receiver through the N intermediate nodes between the source node and destination node. Therefore,  the sender and receiver are not in direct connection with each other, and the information is teleported in Multi-hop between the N neighbor nodes. Also, in this scheme, the 7-qubit entangled states as quantum channels are shared between neighbor nodes.  Always, teleportation processes over long distances are problematic because of the existence of the environmental noise which is almost inescapable and adversely affects the entangled quantum channel. This scheme explains the quantum teleportation between N nodes in N-1 steps and it is suitable for teleportation processes over long distances. Also, we calculate the efficiency of this scheme and indicate the advantages of this protocol.

Keywords

Main Subjects


[1] Bennet C.H., Brassard G.,  Crepeau C., Jozsa R., Peres A., Wooters W. K., Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channel, Phys. Rev. Lett, vol. 70 (1895).
[2] Agrawal P., Pati A., Teleportation and Superdense Coding With W-States, Phys. Rev. A 74 062320 (2006).
[3] Muralidharan S., Panigrahi P. K., Perfect teleportation, quantum-state sharing, and superdense coding through a genuinely entangled five-qubit state, Phys. Rev. A 77 032321 (2008).
 
[4] Zhang Z.H.,  Shu L.,  Mo Z. W., Quantum teleportation and superdense coding through the composite W-Bell channel, Quantum Inf. Process. 12 1957 (2013).
 
[5] Li K., Kong F.Z., Yang M., Ozaydin F., Yang Q., Cao Z. L., Generating multi-photon W-like states for perfect quantum teleportation and superdense coding, Quantum Inf. Process. 15 3137-3150 (2016).
 
[6] Choudhury B.S., Samanta S., Asymmetric Bidirectional 3 ⇔ 2 Qubit Teleportation Protocol Between Alice and Bob Via 9-qubit Cluster State, Int. J. Theor. Phys. 56 3285 (2017).
 
[7] Cola M.M,  Paris M.G.A., Teleportation of bipartite states using a single entangled pair, Phys. Lett. A 337 10 (2005).
 
[8] Nie Y.Y., Li Y.H., Liu J. C., Sang M.H., Perfect Teleportation of an Arbitrary Three-Qubit State by Using W-Class States, Int. J. Theor. Phys. 50 3225 (2011).
 
[9] Zhang B., Liu X. T., Wang J., Tang C.J., Quantum Teleportation of an Arbitrary N-qubit State via GHZ-like States, Int. J. Theor. Phys. 55  1601 (2016).
 
[10] Nandi K., Mazumdar C., Quantum teleportation of a two qubit state using GHZ-like state, Int. J. Theor. Phys. 53  1322 (2014).
 
[11] Choudhury B.S., Samanta S., Simultaneous perfect teleportation of three 2-qubit states, Quantum Inf. Process. 16  230 (2017).
 
[12] Yang Y. Q., Zha X. W., Yu Y., Asymmetric bidirectional controlled teleportation via seven-qubit cluster state, Int. J. Theor. Phys. 55  4197 (2016).
 
[13] Li Y.H., Nie L.P.,  Li X.L., Sang M.H., Asymmetric bidirectional controlled teleportation by using six-qubit cluster state, Int. J. Theor. Phys. 55 3008 (2016).
[14] Agrawal P., Pati A. K., Probabilistic quantum teleportation, Phys. Lett. A 305 12 (2002).
[15]Yu L.Z., Wu T., Probabilistic teleportation of three-qubit entangled state via five-qubit cluster state, Int. J. Theor. Phys. 52 1461 (2013).
[16] Yan F., Yan T., Probabilistic teleportation via a non-maximally entangled GHZ state, Chin. Sci. Bull. 55 902-906 (2010).
[17] Dai H.Y.,  Chen P.X.,  Li C.Z., Probabilistic teleportation of an arbitrarytwo-particle state by two partial three-particle entangled W states, Commun. 231 281 (2004).
[18] Zou Z.Z., Yu X.T., Gong Y.X.,  Zhang Z.-C., Multihop teleportation of two-qubit state via the composite ghz–bellchannel, Phys. Lett. A 381 76 (2017).

[19] Li W.,  Chen H.,  Liu Z., Deterministic Joint Remote Preparation of Arbitrary Four-Qubit Cluster-Type State Using EPR Pairs, Int. J. Theor. Phys. 56 351 (2017).

[20] Li Y. H., Nie L. P., Bidirectional controlled teleportation by using a five-qubit composite GHZ-Bell state,  Int. J. Theor. Phys. 52 1630(2013).

[21] Zou, ZZ., Yu, XT.  Zhang, ZC. Quantum connectivity optimization algorithms for entanglement source deployment in a quantum multi-hop network. Front. Phys. 13, 130202 (2018). https://doi.org/10.1007/s11467-017-0721-7.

[22] Zhou, XZ., Yu, XT. & Zhang, ZC. Multi-Hop Teleportation of an Unknown Qubit State Based on W States. Int J Theor Phys 57, 981–993 (2018). https://doi.org/10.1007.

[23] Wang, K., Yu, X.T., Lu, S.L., Gong, Y.X.. Quantum wireless multihop communication based on arbitrary bell pairs and teleportation. Phys. Rev. A 89(2), 767–771 (2014).
 
[24] Xiong, P.Y.; Yu, X.T.; Zhang, Z.C. Multiple Teleportation via Partially Entangled GHZ-state. Front. Phys. 11 (8), 110303 (2016).

[25] Li W., Chen H., Liu Z., Deterministic Joint Remote Preparation of Arbitrary Four-Qubit Cluster-Type State Using EPR Pairs, Int. J. Theor. Phys. 56 351-361 (2017).

[26] Zhan H.T., Yu X. T.,  Xiong P. Y,  Zhang Z. Ch, Multi-hop teleportation based on W state and EPR pairs, Chin. Phys. B. 25,  5, 050305 (2016).
[27] Zhang Zh.  , Wang J.,  Sun M., Multihop Teleportation via the Composite of Asymmetric W State and Bell State, Int. J. Theor. Phys57 (12) 3605-3620 (2018).
[28] Shi L.H., Yu X.T., Cai X. F., Gong Y.X.,  Zhang Z.C., Quantum information transmission in the quantum wireless multihop network based on Werner state,
Chin. Phys. B 24(5), 050308 (2015).
[29] Choudhury B.S.,  Samanta S., A perfect multi-hop teleportation scheme for transfer of five-qubit entangled states using intermediate nodes, Journal of Modern Optics, 65:12 1479-1485 (2018).
[30] Choudhury B.S., Samanta S., A multi-hop teleportation protocol of arbitrary four-qubit states through intermediate nodes, International Journal of Quantum Information. 16, No. 3 1850026 (2018).