Research Paper: Calculation of Electronic Structure and Energy band of InP in Nanowire and Bulk and Using Pseudopotential

Document Type : Research Paper

Authors

1 Associate Professor, Department of physics, Faculty of Science, Shahid Chamran University of Ahvaz, Ahvaz, Iran

2 M. Sc. Graduated, Department of physics, Faculty of Science, Shahid Chamran University of Ahvaz, Ahvaz, Iran

Abstract

In this paper, electronic and structural properties such as lattice constant, energy band structure, and density of states of InP in bulk and nanowire are calculated. The calculations have been performed using the Pseudopotential method in the framework of density functional theory (DFT) with local density approximation (LDA), and generalized gradient approximation (GGA) by Quantum Espresso package. The results show a direct bandgap of 1.4 eV at the Γ point in the Brillouin zone and have not cut the Fermi level, with a good agreement with the available experimental results. Also, band structure in nanowires of about 1.49 eV was calculated, which shows an increased bulk state. The calculated results show good agreement with the available experimental results.

Keywords

Main Subjects


[1] De. A. and  Pryor. C. E, Predicted band structures of III-V semiconductors in wurtzite phase, Phys. Rev. B 84, 239907, 2011.

[2] Souza. P. L, Ribas. T, Bellini. P. R, and Mendes W m. J. V., Electron and γ irradiation effects in InP assessed by photoluminescence, Journal of Applied Physics 79, 3482, 1996.

[3] http://www. ioffe.ru/SVA /NSM/ Semicond/ InP.html, 1996.

[4] Werking. J. D, Bolognesi. C. R, Chang. L. D, Nguyen. C, Hu. E. L, and Kroemer. H., High-transconductance InAs/AlSb heterojunction field-effect transistors with delta -doped AlSb upper barriers, IEEE Electron Dev. Lett 13, 164, 1992.

[5] Soderstrom. J. R, Chow. D.H, and McGill. T.C., New negative differential resistance device based on resonant interband tunneling, Appl Phys Lett 55, 1094, 1989.

[6] Rino. J. P, and Branicio. P. Phys Status Solidi (b) 244, 239-243, 2006.

[7] Yamamoto. A, Yamaguchi. M, and Uemora. C, High conversion efficiency and high radiation resistance InP homojunction solar cells, Apple. Phys. Lett. 44, 611, 1984.

[9] http://www.quantum-espresso.org, 2021.

[10] Monkhorst, H. J., & Pack, J. D., Special points for Brillouin-zone integrations. Physical Review B, 13 (12), 5188, 1976.

[11] Murnaghan, F. D., The compressibility of media under extreme pressures. Proceedings of the National Academy of Sciences, 30(9), 244-247, 1944.
[12] Madelung, O., Landolt-Bornstein: Numerical data and functional relationships in science and technology. New series group III, 22, 63-117, 1987.
[13] Huang. M. Z, and Ching. W. Y., Calculation of optical excitations in cubic semiconductors. I. Electronic structure and linear response, Phys.Rev.B 47, 9449-9463, 1993.
[14] Satyam. S, Parashari. S, Kumar. S and Auluck. S, Pressure induced, electronic and optical properties of zincblende InP. solid – state Electronics 52, 749-755, 2005.

[15] Gorczyca. I, Christensen. N. E, and Alouani. M. Indium phosphide (InP) lattice parameters, thermal expansion, Phys Rev B 39, 7705 -7712, 1982.

[16] Wei, S. H., & Zunger, A., Predicted band-gap pressure coefficients of all diamond and zinc-blende semiconductors: Chemical trends. Physical Review B, 60(8), 5404, 1999.

[17] Zhang, S. B., and Marvin L. Cohen. High-pressure phases of III-V zinc-blende semiconductors. Physical Review B 35(14), 7604, 1987.
[18] Birch, F., Finite elastic strain of cubic crystals. Physical Review, 71(11), 809, 1947.
[19] Prassides, K., Iwasa, Y., Ito, T., Chi, D. H., Uehara, K., Nishibori, E., ... & Akimitsu, J., Compressibility of the MgB 2 superconductor. Physical Review B, 64(1), 012509, 2001.
[20] Salehi, H., Sr-Doping Effect on the Electronic Structure of BaTiO3 Ceramic. Indian Journal of Physics, 80, 1195-1200, 2006.
[21] Lide, D. R., & Frederiske, H. R., Handbook of Chemistry and Physics, 80th edn, Section 8, 1999.
[22] Sahr. U, Grant. I, and Muller. G, Conf. proc., 13thInt.Conf. on Indium Phosphid and Related Materials, IEEE, Nara. Japan, ISBN:0-7803-6700-6,533-536, 2001.
[23] Adachi, S., Band gaps and refractive indices of AlGaAsSb, GaInAsSb, and InPAsSb: Key properties for a variety of the 2–4‐μm optoelectronic device applications. Journal of applied physics, 61(10), 4869-4876, 1987.

[24] Trägårdh, J., Persson, A. I., Wagner, J. B., Hessman, D., & Samuelson, L., Measurements of the band gap of wurtzite InAs 1− x P x nanowires using photocurrent spectroscopy. Journal of applied physics, 101(12), 123701, 2007.

[25] De, A., & Pryor, C. E., Predicted band structures of III-V semiconductors in the wurtzite phase. Physical Review B, 81(15), 155210, 2010.