Research Paper: Investigation of the Effect of Uniaxial Strain on the Electrical Transport Properties of Zigzag Carbon Nanotube Joints

Document Type : Research Paper

Author

Assistant Professor, Department of Physics, Sari Branch, Islamic Azad University, Sari, Iran.

Abstract

In this paper, the electron transport through a zigzag single-walled carbon nanotube (SWCNT) junction consisting of zigzag SWCNT (central region) sandwiched between two semi-infinite metallic zigzag SWCNT leads to the presence of an applied uniaxial strain is numerically investigated. This study is based on a nearest-neighbor tight-binding approximation within the framework of a generalized Green’s function technique and relies on the Landauer-B¨utikker formalism. The results show that the electron transport properties of the system can be well controlled by modifying the uniaxial strain strength and length of the SWCNT junction. Besides, applying compressive strain is more effective than tensile strain in opening a band gap in the system. Furthermore, the current amplitude for the tensile strain is bigger than the compressive strain with the same absolute values of uniaxial strain strength. As the length of the intermediate region increases, the density of states in Fermi energy decreases, and the magnitude of the electron emission function in Fermi energy decreases to zero, leading to the transition of the metal to the semiconductor.

Keywords

Main Subjects


[1] Iijima, S. Nature 354 56 Iijima S and Ichihashi T 1993. Nature, 363, 603 (1991).
[2] Charlier, J. C., Blase, X., & Roche, S., Electronic and transport properties of nanotubes. Reviews of modern physics, 79(2), 677 (2007).
[3] Derycke V., Martel R., Appenzeller J., Avouris P., Nano Letters 1(9), 453-465 (2001).
[4] Bachtold, A., Hadley, P., Nakanishi, T., & Dekker, C., Logic circuits with carbon nanotube transistors. Science, 294(5545), 1317-1320 (2001).
[5] Saito, R., Fujita, M., Dresselhaus, G., & Dresselhaus, U. M., Electronic structure of chiral graphene tubules. Applied physics letters, 60(18), 2204-2206 (1992).
[6] Paulson, S., M. R. Falvo, N. Snider, A. Helser, T. Hudson, A. Seeger, R. M. Taylor, R. Superfine, and S. Washburn., In situ resistance measurements of strained carbon nanotubes. Applied Physics Letters, 75(19), 2936-2938 (1999).
[7] Tombler, Thomas W., Chongwu Zhou, Leo Alexseyev, Jing Kong, Hongjie Dai, Lei Liu, C. S. Jayanthi, Meijie Tang, and Shi-Yu Wu., Reversible electromechanical characteristics of carbon nanotubes underlocal-probe manipulation. Nature, 405(6788), 769-772 (2000).
[8] Maiti, A., Svizhenko, A., & Anantram, M. P., Electronic transport through carbon nanotubes: Effects of structural deformation and tube chirality. Physical Review Letters, 88(12), 126805 (2002).
[9] Cao, J., Wang, Q., & Dai, H., Electromechanical properties of metallic, quasimetallic, and semiconducting carbon nanotubes under stretching. Physical review letters, 90(15), 157601 (2003).
[10] Umeno, Y., Kitamura, T., & Kushima, A., Metallic–semiconducting transition of single-walled carbon nanotubes under high axial strain. Computational materials science, 31(1-2), 33-41 (2004).
[11] Zhang, Y., & Han, M., Band gap of carbon nanotubes under combined uniaxial–torsional strain. Physica E: Low-dimensional Systems and Nanostructures, 43(10), 1774-1778 (2011).
[12] Chen, Y. R., Weng, C. I., & Sun, S. J., Electronic properties of zigzag and armchair carbon nanotubes under uniaxial strain. Journal of Applied Physics, 104(11), 114310 (2008).
[13] Sun, J., Yuan, K., Zhou, W., Zhang, X., Onoe, J., Kawazoe, Y., & Wang, Q., Low thermal conductivity of peanut-shaped carbon nanotube and its insensitive response to uniaxial strain. Nanotechnology, 31(11), 115701 (2019).  
[14] Park, J., Pena, P., & Tekes, A., Thermal Transport Behavior of Carbon Nanotube–Graphene Junction under Deformation. International Journal of Nanoscience, 19(02), 1950013 (2020).
[15] Güemes, A., Pozo Morales, A. R., Fernandez-Lopez, A., Sanchez-Romate, X. X. F., Sanchez, M., & Ureña, A., Directional Response of Randomly Dispersed Carbon Nanotube Strain Sensors. Sensors, 20(10), 2980 (2020).
 
[16] Faizabadi S.E.,  Kargar Z., Iranian Journal of Physics Research 12 (1), 1-8  (2012)  (in Persian)
[17] Prins, F., Barreiro, A., Ruitenberg, J. W., Seldenthuis, J. S., Aliaga-Alcalde, N., Vandersypen, L. M., & van der Zant, H. S., Room-temperature gating of molecular junctions using few-layer graphene nanogap electrodes. Nano letters, 11(11), 4607-4611 (2011).
[18] Marquardt, C.W., Grunder, S., Błaszczyk, A., Dehm, S., Hennrich, F., Löhneysen, H.V., Mayor, M. and Krupke, R., Electroluminescence from a single nanotube–molecule–nanotube junction. Nature nanotechnology, 5(12), 863-867 (2010).
[19] Kim, W. Y., Kwon, S. K., & Kim, K. S., Negative differential resistance of carbon nanotube electrodes with asymmetric coupling phenomena. Physical Review B, 76(3), 033415 (2007).
[20] Harrison W., Electronic structure and properties of solids (Freeman Press, San Francisco) (1980).
[21] Yoon, Y., & Guo, J., Analysis of strain effects in ballistic carbon nanotube FETs. IEEE Transactions on Electron Devices, 54(6), 1280-1287 (2007).
[22] Natsuki, T., Tantrakarn, K., & Endo, M. J. A. P. A., Effects of carbon nanotube structures on mechanical properties. Applied Physics A, 79(1), 117-124 (2004).
[23] Sancho, M. L., Sancho, J. L., Sancho, J. L., & Rubio, J., Highly convergent schemes for the calculation of bulk and surface Green functions. Journal of Physics F: Metal Physics, 15(4), 851 (1985).
[24] Datta, S., Electronic transport in mesoscopic systems. Cambridge university press (1997).
[25] Wilder, J. W., Venema, L. C., Rinzler, A. G., Smalley, R. E., & Dekker, C., Electronic structure of atomically resolved carbon nanotubes. Nature, 391(6662), 59-62 (1998).
[26] Sánchez-Portal, D., Artacho, E., Soler, J. M., Rubio, A., & Ordejón, P., Ab initio structural, elastic, and vibrational properties of carbon nanotubes. Physical Review B, 59(19), 12678 (1999).
[27] Dutta, P., Maiti, S. K., & Karmakar, S. N., Positional dependence of energy gap on line defect in armchair graphene nanoribbons: Two-terminal transport and related issues. Journal of Applied Physics, 114(3), 034306 (2013).