[1] Iijima, S. Nature 354 56 Iijima S and Ichihashi T 1993. Nature, 363, 603 (1991).
[2] Charlier, J. C., Blase, X., & Roche, S., Electronic and transport properties of nanotubes. Reviews of modern physics, 79(2), 677 (2007).
[3] Derycke V., Martel R., Appenzeller J., Avouris P., Nano Letters 1(9), 453-465 (2001).
[4] Bachtold, A., Hadley, P., Nakanishi, T., & Dekker, C., Logic circuits with carbon nanotube transistors. Science, 294(5545), 1317-1320 (2001).
[5] Saito, R., Fujita, M., Dresselhaus, G., & Dresselhaus, U. M., Electronic structure of chiral graphene tubules. Applied physics letters, 60(18), 2204-2206 (1992).
[6] Paulson, S., M. R. Falvo, N. Snider, A. Helser, T. Hudson, A. Seeger, R. M. Taylor, R. Superfine, and S. Washburn., In situ resistance measurements of strained carbon nanotubes. Applied Physics Letters, 75(19), 2936-2938 (1999).
[7] Tombler, Thomas W., Chongwu Zhou, Leo Alexseyev, Jing Kong, Hongjie Dai, Lei Liu, C. S. Jayanthi, Meijie Tang, and Shi-Yu Wu., Reversible electromechanical characteristics of carbon nanotubes underlocal-probe manipulation. Nature, 405(6788), 769-772 (2000).
[8] Maiti, A., Svizhenko, A., & Anantram, M. P., Electronic transport through carbon nanotubes: Effects of structural deformation and tube chirality. Physical Review Letters, 88(12), 126805 (2002).
[9] Cao, J., Wang, Q., & Dai, H., Electromechanical properties of metallic, quasimetallic, and semiconducting carbon nanotubes under stretching. Physical review letters, 90(15), 157601 (2003).
[10] Umeno, Y., Kitamura, T., & Kushima, A., Metallic–semiconducting transition of single-walled carbon nanotubes under high axial strain. Computational materials science, 31(1-2), 33-41 (2004).
[11] Zhang, Y., & Han, M., Band gap of carbon nanotubes under combined uniaxial–torsional strain. Physica E: Low-dimensional Systems and Nanostructures, 43(10), 1774-1778 (2011).
[12] Chen, Y. R., Weng, C. I., & Sun, S. J., Electronic properties of zigzag and armchair carbon nanotubes under uniaxial strain. Journal of Applied Physics, 104(11), 114310 (2008).
[13] Sun, J., Yuan, K., Zhou, W., Zhang, X., Onoe, J., Kawazoe, Y., & Wang, Q., Low thermal conductivity of peanut-shaped carbon nanotube and its insensitive response to uniaxial strain. Nanotechnology, 31(11), 115701 (2019).
[14] Park, J., Pena, P., & Tekes, A., Thermal Transport Behavior of Carbon Nanotube–Graphene Junction under Deformation. International Journal of Nanoscience, 19(02), 1950013 (2020).
[15] Güemes, A., Pozo Morales, A. R., Fernandez-Lopez, A., Sanchez-Romate, X. X. F., Sanchez, M., & Ureña, A., Directional Response of Randomly Dispersed Carbon Nanotube Strain Sensors. Sensors, 20(10), 2980 (2020).
[16] Faizabadi S.E., Kargar Z., Iranian Journal of Physics Research 12 (1), 1-8 (2012) (in Persian)
[17] Prins, F., Barreiro, A., Ruitenberg, J. W., Seldenthuis, J. S., Aliaga-Alcalde, N., Vandersypen, L. M., & van der Zant, H. S., Room-temperature gating of molecular junctions using few-layer graphene nanogap electrodes. Nano letters, 11(11), 4607-4611 (2011).
[18] Marquardt, C.W., Grunder, S., Błaszczyk, A., Dehm, S., Hennrich, F., Löhneysen, H.V., Mayor, M. and Krupke, R., Electroluminescence from a single nanotube–molecule–nanotube junction. Nature nanotechnology, 5(12), 863-867 (2010).
[19] Kim, W. Y., Kwon, S. K., & Kim, K. S., Negative differential resistance of carbon nanotube electrodes with asymmetric coupling phenomena. Physical Review B, 76(3), 033415 (2007).
[20] Harrison W., Electronic structure and properties of solids (Freeman Press, San Francisco) (1980).
[21] Yoon, Y., & Guo, J., Analysis of strain effects in ballistic carbon nanotube FETs. IEEE Transactions on Electron Devices, 54(6), 1280-1287 (2007).
[22] Natsuki, T., Tantrakarn, K., & Endo, M. J. A. P. A., Effects of carbon nanotube structures on mechanical properties. Applied Physics A, 79(1), 117-124 (2004).
[23] Sancho, M. L., Sancho, J. L., Sancho, J. L., & Rubio, J., Highly convergent schemes for the calculation of bulk and surface Green functions. Journal of Physics F: Metal Physics, 15(4), 851 (1985).
[24] Datta, S., Electronic transport in mesoscopic systems. Cambridge university press (1997).
[25] Wilder, J. W., Venema, L. C., Rinzler, A. G., Smalley, R. E., & Dekker, C., Electronic structure of atomically resolved carbon nanotubes. Nature, 391(6662), 59-62 (1998).
[26] Sánchez-Portal, D., Artacho, E., Soler, J. M., Rubio, A., & Ordejón, P., Ab initio structural, elastic, and vibrational properties of carbon nanotubes. Physical Review B, 59(19), 12678 (1999).
[27] Dutta, P., Maiti, S. K., & Karmakar, S. N., Positional dependence of energy gap on line defect in armchair graphene nanoribbons: Two-terminal transport and related issues. Journal of Applied Physics, 114(3), 034306 (2013).