Research Paper: Influence of Intrinsic Decoherence on Entanglement and Teleportation in Jaynes- Cummings Model in a Two- Qutrit System

Document Type : Research Paper

Authors

1 Assistant Professor, Department of Physics, Faculty of Science, Shahid Chamran University of Ahvaz, Ahvaz, Iran

2 M.Sc. in Physics, Department of Physics, Faculty of Science, Shahid Chamran University of Ahvaz, Ahvaz, Iran.

3 Associate Professor, Department of Physics, Faculty of Science, Shahid Chamran University of Ahvaz, Ahvaz, Iran

Abstract

This paper uses the Jaynes-Cummings model to investigate the entanglement of a two-qutrit state in a cavity. The entanglement is analyzed as a function of decoherence rate, coupling constant, and frequency of atomic transition. We note that this entanglement is decreased passing time and the negativity is an increasing function of the frequency of atomic transition. The negativity at first is an increasing function of the coupling constant, then for higher values of the coupling constant, the negativity decreases with the increase of the coupling constant and over time it tends to zero. We also investigate the influence of intrinsic decoherence on quantum teleportation via this two-qutrit state. We plot the fidelity as a function of the decoherence rate, the coupling constant, and the atomic transition frequency. The results show that the fidelity decreases with an increasing decoherence rate. Moreover, the frequency of fidelity oscillations is an increasing function of the atomic transition frequency. The fidelity is relatively independent of the coupling constant, especially at a higher value of the coupling constant.

Keywords

Main Subjects


  1. Bouwmeester D., Pan J. W., Mattle K., Eibl M., Weinfurter H., and Zeilinger A. A., “Experimental quantum teleportation,” Nature 390, 575 (1997).
  2. Bouwmeester D., Mattle K., Pan J.W., Weinfurter H., Zeilinger A., and Zukowski M., “Experimental quantum teleportation of arbitrary quantum states,” Phys. B 67, 749 (1998).
  3. Bennett C. H. and Wiesner S. J., Communication via one and two-particle operators on Einstein-Podolsky-Rosen states, Rev. Lett. 69, 2881 (1992).
  4. Mattle K., Weinfurter H., Kwiat P. G., and Zeilinger A., Dense Coding in Experimental Quantum Communication, Rev. Lett. 76, 4546 (1996).
  5. Schumacher B., Quantum coding, Phys. Rev. A 51, 2738 (1995).
  6. Bennett C. H., Brassard G., Crepeau C., Jozsa R., Peres A., and Wootters W. K., Teleporting an unknown quantum state via dual classical and Einstein- Podolsky- Rosen channels, Phys. Rev. Lett. 70, 1895 (1993).
  7. Joos E., Zeh H. D., Kiefer C., Giulini D., Kupsch J., and Stamatescu I. O., Decoherence and the Appearance of a Classical World in Quantum Theory, Springer Press, 2nd edition (2003).
  8. Milburn G. J., Intrinsic decoherence in quantum mechanics, Phys. Rev. A 44, 5401-5406 (1991).
  9. Caves C. M. and Milburn G. J., Quantum-mechanical model for continuous position measurements, Phys. Rev. D 36, 5543(1987).
  10. Milburn G. J., Kicked quantized cavity mode: An open systems theory approach, Phys. Rev. A 36, 744 (1987).
  11. Qin M. and Ren Z. Z., Influence of intrinsic decoherence on entanglement teleportation via a Heisenberg XYZ model with different Dzyaloshincki-Moriya interaction, Quantum information processing, 14, 2055-2066, (2015).
  12. Bin S., Tian-Hai Z., and Jian Z., Influence of intrinsic decoherence on entanglement in two-qubit quantum Heisenberg XYZ chain, Commun. Theor. Phys. (Beijing China) 44, 255-258 (2005).
  13. Mohammadi H., Akhtarshenas S. J., and Kheirandish F., Influence of dephasing on the entanglement teleportation via a two-qubit Heisenberg XYZ system, Eur. Phys. J. D 62, 439-447 (2011).
  14. Guo J. L., Xia Y., and Song H. S., Effects of Dzyaloshinski–Moriya anisotropic antisymmetric interaction on entanglement and teleportation in a two-qubit Heisenberg chain with intrinsic decoherence, Opt. Commun. 281, 2326 (2008).
  15. Zheng L. and Feng Zhang G., Intrinsic decoherence in Jaynes-Cummings model with Heisenberg exchange interaction, Eur. Phys. J. D 71, 288 (2017).
  16. Hu M. L. and Lian H. L., State transfer in intrinsic decoherence spin channels, Eur. Phys. J. D 55, 711–721(2009).
  17. Moya-Cessa H., Buzek V., Kim M. S., and Knight P. L., Intrinsic decoherence in the atom-field interaction, Phys. Rev. A 48, 3900 (1993).
  18. Aty M. A., Cessa H. M., Sudden death and long-lived entanglement of two trapped ions, Phys. Lett. A 369, 372 (2007).
  19. Kuang L.-M. and Chen X., Exact solution of the Milburn equation for the two-photon Jaynes-Cummings model, J. Phys. A: Math. Gen. 27, Lett 633 (1994).
  20. Zhang X. T., Zhu A. D., and Zhang S., Intrinsic Decoherence of Two Atoms System with Kerr Medium Chin, Phys. Lett. 24, 1460 (2007).
  21. Ghoshooni A., Naji A. and Afshar D., Influence of intrinsic decoherence on the entanglement in two-qubit system under XYZ Jaynes- Cummings model in a two-qutrit system Heisenberg interaction in Jaynes-Cummings model, Proceedings of The First National Conference and Workshop on Quantum Information and Open Quantum Systems (2018).
  22. Naji A., Hamzehofi R. and Afshar D., Entanglement teleportation via two qubits Heisenberg in Jaynes-Cummings model under intrinsic decoherence, IJPR.,19(3), 656 (2019).
  23. Naji A. and Mollaei Zamani M., Study of thermal entanglement and teleportation in spin star networks in Heisenberg XXX model, IJAP., 11(3),68 -76 (2021).
  24. Xu R., Zhou R-G., Li Y., Jiang S., and Ian H., Enhancing robustness of noisy qutrit teleportation with Markovian memory, EPJ Quantum Technology. 9, 4 (2022).
  25. Wang M. and Yan F., Probabilistic chain teleportation of a qutrit-state, CTP. 54(2) 263(2010).
  26. Lambropoulos P. and Petrosyan D., Fundamental of quantum optics and quantum information, Springer Press, Berlin (2007).
  27. Vidal G. and Werner R. F., Computable measure of entanglement, Phys. Rev. A 65, 032314 (2002).
  28. Carteret H. A., Noiseless quantum circuits for the Peres separability criterion, Phys. Rev. Lett. 94 040502 (2005).
  29. Bowen G. and Bose S. Teleportation as a depolarizing quantum channel, relative entropy, and classical capacity”, Phys. Rev. Lett. 87 267901 (2001).
  30. Arvind, Mallesh K. S., and Mukundam N., A generalized pancharatnam geometric phase formula for three-level quantum systems, J. Phys. A. 30(7), 2417 (1997).
  31. Gell-Mann M. and Neeman Y., The eightfold way, W. A. Benjamin Inc., New York (1964).
  32. Jozsa R., Fidelity for mixed quantum states, J. Mod. Opt. 41, 2315 (1994).
  33. Bowdrey M. D., Oi D. K. L., Short A. J., Banaszek K., and Jones J. A., Fidelity of single qubit maps, Phys. Lett. A. 294, 258 (2002).