Research Paper: Investigating Effective Parameters in the High-Harmonic Spectra from WSe2 Structure

Document Type : Research Paper

Authors

1 M. Sc. Student, Department of Physics, Faculty of Basic Sciences, Tarbiat Modares University, Tehran, Iran.

2 PhD Student, Department of Physics, Faculty of Basic Sciences, Tarbiat Modares University, Tehran, Iran.

3 Researcher, Institute of Condensed Matter Theory and Optics, Friedrich-Schiller-University Jena, Max-Wien-Platz 1, Jena D-07743, Germany

4 Assistant Professor, Department of Physics, Faculty of Basic Sciences, Tarbiat Modares University, Tehran, Iran

Abstract

In this research, the symmetry of high-order harmonics resulting from the interaction of a single-layer WSe2 with a linearly polarized laser in both zigzag and armchair directions have been investigated using time-dependent density functional theory in real space. The dependence of the cutoff frequency behavior with the increase of the electric field amplitude and the behavior of the harmonic yield with the laser wavelength has been analyzed. The results show the linear dependence of the cutoff frequency with the electric field and the exponential behavior of the harmonic yield with the laser wavelength. Also, the effect of the input laser field polarization on the high-order harmonic spectrum and harmonic yield has been investigated. Changing the rotation angle of laser polarization to 30 degrees for elliptically polarized light with an ellipticity parameter of 0.1 creates the highest harmonic yield. Also, the results of this research show that by changing the polarization of the input electric field, the polarization of high-order harmonics also changes, which leads to the production of high-order harmonics with different polarization.

Keywords

Main Subjects


[1] Li, J., et al., Attosecond science based on high harmonic generation from gases and solids. Nature Communications, 11(1): p. 1-13, 2020. DOI: 10.1038/s41467-020-16480-6
[2] Li, J., et al., 53-attosecond X-ray pulses reach the carbon K-edge. Nature communications, 8(1): p. 1-5, 2017. DOI: 10.1038/s41467-017-00321-0
[3] Garg, M., H.-Y. Kim, and E. Goulielmakis, Ultimate waveform reproducibility of extreme-ultraviolet pulses by high-harmonic generation in quartz. Nature Photonics, 12(5): p. 291-296, 2018. DOI: 10.1038/s41566-018-0123-6
[4] Krausz, F. and M. Ivanov, Attosecond physics. Reviews of modern physics, 81(1): p. 163, 2009.
[5] Shiner, A., et al., Wavelength scaling of high harmonic generation efficiency. Physical Review Letters, 103(7): p. 073902, 2009. DOI: 10.1103/PhysRevLett.103.073902
[6] Sansone, G., L. Poletto, and M. Nisoli, High-energy attosecond light sources. Nature Photonics, 5(11): p. 655-663, 2011. DOI: 10.1038/nphoton.2011.167
[7] Tancogne-Dejean, N., et al., Impact of the electronic band structure in high-harmonic generation spectra of solids. Physical review letters, 118(8): p. 08740., 2017. DOI: 10.1103/PhysRevLett.118.087403
[8] Kleinman, D.A., A. Ashkin, and G. Boyd, Second-harmonic generation of light by focused laser beams. Physical Review, 145(1): p. 338, 1966.  DOI: 10.1103/PhysRev.145.338
[9] McPherson, A., et al., Studies of multiphoton production of vacuum-ultraviolet radiation in the rare gases. JOSA B, 4(4): p. 595-601, 1987.  DOI: 10.1364/JOSAB.4.000595
[10] Lewenstein, M., et al., Theory of high-harmonic generation by low-frequency laser fields. Physical Review A, 49(3): p. 2117, 1994.  DOI: 10.1103/PhysRevA.49.2117
[11] Wegener, M., Extreme nonlinear optics: an introduction. Springer Science & Business Media, 2005
[12] Golde, D., T. Meier, and S.W. Koch, High harmonics generated in semiconductor nanostructures by the coupled dynamics of optical inter-and intraband excitations. Physical Review B, 77(7): p. 075330, 2008.  DOI: 10.1103/PhysRevB.77.075330
[13] Golde, D., T. Meier, and S.W. Koch, Microscopic analysis of extreme nonlinear optics in semiconductor nanostructures. JOSA B, 23(12): p. 2559-2565, 2006.  DOI: 10.1364/JOSAB.23.002559
[14] Ghimire, S., et al., Observation of high-order harmonic generation in a bulk crystal. Nature physics, 7(2): p. 138-141, 2011. DOI: 10.1038/nphys1847
[15] Hansen, K.K., T. Deffge, and D. Bauer, High-order harmonic generation in solid slabs beyond the single-active-electron approximation. Physical Review A, 96(5): p. 053418, 2017. DOI: 10.1103/PhysRevA.96.053418
[16] Tancogne-Dejean, N., et al., Ellipticity dependence of high-harmonic generation in solids originating from coupled intraband and interband dynamics. Nature communications, 8(1): p. 1-10, 2017. DOI: 10.1038/s41467-017-00764-5
[17] Nourbakhsh, Z., et al., High Harmonics and Isolated Attosecond Pulses from MgO. Physical Review Applied, 15(1): p. 014013, 2021. DOI: 10.1103/PhysRevApplied.15.014013
[18] Guan, M.-X., et al., Cooperative evolution of intraband and interband excitations for high-harmonic generation in strained MoS2. Physical Review B, 99(18): p. 184306, 2019. DOI: 10.1103/PhysRevB.99.184306
[19] Tancogne-Dejean, N. and A. Rubio, Atomic-like high-harmonic generation from two-dimensional materials. Science Advances, 2(4): p. eaao5207, 2018. DOI: 10.1126/sciadv.aao5207
[20] Yoshikawa, N., et al., Interband resonant high-harmonic generation by valley polarized electron–hole pairs. Nature communications, 10(1): p. 1-7, 2019. DOI: 10.1038/s41467-019-11697-6
[21] Wu, M., et al., High-harmonic generation from Bloch electrons in solids. Physical Review A, 91(4): p. 043839, 2015. DOI: 10.1103/PhysRevA.91.043839
[22] Vampa, G., et al., Linking high harmonics from gases and solids. Nature, 522(7557): p. 462-464, 2015. DOI: 10.1038/nature14517
[23] Luu, T.T., et al., Extreme ultraviolet high-harmonic spectroscopy of solids. Nature, 521(7553): p 498-502, 2015. DOI: 10.1038/nature14456
[24] Kira, M. and S.W. Koch, Semiconductor quantum optics. Cambridge University Press, 2011.
[25] Liu, X., et al., Wavelength dependence of high-order harmonic yields in solids. Physical Review A, 98(6): p. 063419, 2018. DOI: 10.1103/PhysRevA.98.063419
[26] Vampa, G., et al., Theoretical analysis of high-harmonic generation in solids. Physical review letters, 113(7): p. 073901, 2014. DOI: 10.1103/PhysRevLett.113.073901
[27] Wang, Z., et al., The roles of photo-carrier doping and driving wavelength in high harmonic generation from a semiconductor. Nature communications, 8(1): p. 1-7, 2017. DOI: 10.1038/s41467-017-01899-1
[28] Jiang, S., et al., Crystal symmetry and polarization of high-order harmonics in ZnO. Journal of Physics B: Atomic, Molecular and Optical Physics, 52(22): p. 225601, 2019. DOI: 10.1088/1361-6455/ab470d
[29] Kobayashi, Y., et al., Polarization flipping of even-order harmonics in monolayer transition-metal dichalcogenides. Ultrafast Science, 2021. DOI: 10.34133/2021/9820716
[30] Tamaya, T., et al., Higher-order harmonic generation caused by elliptically polarized electric fields in solid-state materials. Physical Review B, 94(24): p. 241107, 2016. DOI: 10.1103/PhysRevB.94.241107
[31] Klemke, N., et al., Polarization-state-resolved high-harmonic spectroscopy of solids. Nature communications, 10(1): p. 1-7, 2019. DOI: 10.1038/s41467-019-09328-1
[32] Liu, Z., et al., Strain and structure heterogeneity in MoS2 atomic layers grown by chemical vapour deposition. Nature communications, 5(1): p. 1-9, 2014. DOI: 10.1038/ncomms6246
[33] Castellanos-Gomez, A., et al., Local strain engineering in atomically thin MoS2. Nano letters, 13(11): p. 5361-5366, 2013.DOI: 10.1021/nl402875m
[34] Liang, J., et al., Monitoring local strain vector in atomic-layered MoSe2 by second-harmonic generation. Nano letters, 17(12): p. 7539-7543, 2017. DOI: 10.1021/acs.nanolett.7b03476
[35] He, K., et al., Experimental demonstration of continuous electronic structure tuning via strain in atomically thin MoS2. Nano letters, 13(6): p. 2931-2936, 2013. DOI: 10.1021/nl4013166
[36] Mak, K.F. and J. Shan, Photonics and optoelectronics of 2D semiconductor transition metal dichalcogenides. Nature Photonics, 10(4): p. 216-226, 2016. DOI: 10.1038/nphoton.2015.282
[37] Hartwigsen, C., S. Gœdecker, and J. Hutter, Relativistic separable dual-space Gaussian pseudopotentials from H to Rn. Physical Review B, 58(7): p. 3641, 1998. DOI: 10.1103/PhysRevB.58.3641
[38] Sun, N., et al., Near-circularly-polarized attosecond pulse generation from carbon monoxide molecules with a combination of linearly and circularly polarized fields. Physical Review A, 101(5): p. 053437,  2020.  DOI: 10.1103/PhysRevA.101.053437
[39] Tancogne-Dejean, N., et al., Octopus, a computational framework for exploring light-driven phenomena and quantum dynamics in extended and finite systems. The Journal of chemical physics, 152(12): p. 124119, 2020. DOI: 10.1063/1.5142502
[40] Zhao, W., et al., Electronic structure of exfoliated millimeter-sized monolayer WSe2 on silicon wafer. Nano Research, 12(12): p. 3095-3100, 2019.DOI: 10.1007/s12274-019-2557-7
[41] Zhou, H., et al., Large area growth and electrical properties of p-type WSe2 atomic layers. Nano letters, 15(1): p. 709-713, 2015. DOI: 10.1021/nl504256y              
[42] Yue, L. and M.B. Gaarde, Structure gauges and laser gauges for the semiconductor Bloch equations in high-order harmonic generation in solids. Physical Review A, 101(5): p. 053411, 2020.  DOI: 10.1103/PhysRevA.101.053411
[43] Yue, L. and M.B. Gaarde, Expanded view of electron-hole recollisions in solid-state high-order harmonic generation: Full-Brillouin-zone tunneling and imperfect recollisions. Physical Review A, 103(6): p. 063105, 2021.DOI: 10.1103/PhysRevA.103.063105