Research Paper: Non-Markovian Nature and Quantum Speed Limit in The Spontaneous Emission Dynamics of a Quantum Emitter in The Vicinity of a Plasmonic Core-shell Nanostructure

Document Type : Research Paper

Authors

1 PhD student, Department of Physics, University of Isfahan, Isfahan, Iran

2 Associate Professor, Quantum Optics Group, Department of Physics, University of Isfahan, Isfahan, Iran

Abstract

A hybrid system including a quantum emitter in the vicinity of a plasmonic core-shell nanostructure in the air is considered, and the spontaneous emission process of the emitter is investigated. The aim is to examine the effect of the plasmonic system on the quantum speed limit and the non-Markovian dynamics of the system. Using the dyadic Green's function of the system, the impact of geometric parameters such as the thickness of the plasmonic nanostructure shell and the distance between the emitter and the nanostructure on the evolution and physical behavior of the desired parameters has been investigated. According to the obtained results, by increasing the distance of the emitter from the nanostructure, the dynamics of spontaneous emission change from non-Markovian to Markovian, and the value of the non-Markovian measure tends to zero. In this condition, the quantum speed limit increases and becomes equal to the evolution time of the system. In addition, as the thickness of the shell increases, the mean value of the non-Markovian measure decreases.

Keywords

Main Subjects


[1]  Maier, Stefan A., Plasmonics: fundamentals and applications., Vol. 1. New York: Springer, 2007, DOI: 10.1007/0-387-37825-1.
[2] Novotny, Lukas, and Bert Hecht., Principles of nano-optics., Cambridge university press, 2012, DOI: 10.1017/CBO9780511794193.
[3] Gramotnev, Dmitri K., and Sergey I. Bozhevolnyi., Plasmonics beyond the diffraction limit., Nature Photonics 4(2), 83-91, 2010, DOI: 10.1038/nphoton.2009.282.
[4] Oulton, Rupert F., Volker J. Sorger, Thomas Zentgraf, Ren-Min Ma, Christopher Gladden, Lun Dai, Guy Bartal, and Xiang Zhang., Plasmon lasers at deep subwavelength scale., nature 461, ( 7264): 629-632, 2009, DOI: 10.1038/nature08364.
[5] Russell, Kasey J., Tsung-Li Liu, Shanying Cui, and Evelyn L. Hu., Large spontaneous emission enhancement in plasmonic nanocavities., Nature Photonics 6(7), 459-462, 2012, DOI: 10.1038/nphoton.2012.112.
[6] Ding, Song-Yuan, Jun Yi, Jian-Feng Li, Bin Ren, De-Yin Wu, Rajapandiyan Panneerselvam, and Zhong-Qun Tian., Nanostructure-based plasmon-enhanced Raman spectroscopy for surface analysis of materials., Nature Reviews Materials 1(6), 1-16, 2016, DOI: 10.1038/natrevmats.2016.21.
[7] Huang, Yingzhou, Yurui Fang, Zhenglong Zhang, Ling Zhu, and Mengtao Sun. "Nanowire-supported plasmonic waveguide for remote excitation of surface-enhanced Raman scattering." Light: Science & Applications 3(8), e199-e199, 2014, DOI: 10.1038/lsa.2014.80.
[8] Anker, Jeffrey N., W. Paige Hall, Olga Lyandres, Nilam C. Shah, Jing Zhao, and Richard P. Van Duyne., Biosensing with plasmonic nanosensors., Nature Materials 7(6), 442-453, 2008, DOI: 10.1038/nmat2162.
[9] Homola, Jiří. "Surface plasmon resonance sensors for detection of chemical and biological species." Chemical Reviews 108(2), 462-493, 2008, DOI: 10.1021/cr068107d.
[10] Xu, Da, Xiao Xiong, Lin Wu, Xi-Feng Ren, Ching Eng Png, Guang-Can Guo, Qihuang Gong, and Yun-Feng Xiao., Quantum plasmonics: new opportunity in fundamental and applied photonics.,  Advances in Optics and Photonics 10(4), 703-756, 2018, DOI: 10.1364/AOP.10.000703.
[11] Ren, Xi-Feng, Guo-Ping Guo, Yun-Feng Huang, Chuan-Feng Li, and Guang-Can Guo., Plasmon-assisted transmission of high-dimensional orbital angular-momentum entangled state., Europhysics Letters 76(5), 753-759, 2006, DOI: 10.1209/epl/i2006-10359-2.
[12] Fasel, Sylvain, Franck Robin, Esteban Moreno, Daniel Erni, Nicolas Gisin, and Hugo Zbinden., Energy-time entanglement preservation in plasmon-assisted light transmission., Physical review letters 94(11), 110501, 2005, DOI: 10.1103/PhysRevLett.94.110501.
[13] Altewischer, E., M. P. Van Exter, and J. P. Woerdman., Plasmon-assisted transmission of entangled photons., Nature 418(6895), 304-306, 2002, DOI: 10.1038/nature00869.
[14] Akimov, A. V., A. Mukherjee, C. L. Yu, D. E. Chang, A. S. Zibrov, P. R. Hemmer, H. Park, and M. D. Lukin., Generation of single optical plasmons in metallic nanowires coupled to quantum dots., Nature 450(7168), 402-406, 2007, DOI: 10.1038/nature06230.
[15] Chang, D. E., Anders Søndberg Sørensen, P. R. Hemmer, and M. D. Lukin., Quantum optics with surface plasmons., Physical review letters 97(5), 053002, 2006, DOI: 10.1103/physrevlett.97.053002.
[16] Kolesov, Roman, Bernhard Grotz, Gopalakrishnan Balasubramanian, Rainer J. Stöhr, Aurélien AL Nicolet, Philip R. Hemmer, Fedor Jelezko, and Jörg Wrachtrup., Wave–particle duality of single surface plasmon polaritons., Nature Physics 5(7), 470-474, 2009, DOI: 10.1038/nphys1278.
[17] Banin, Uri, Yuval Ben-Shahar, and Kathy Vinokurov., Hybrid semiconductor–metal nanoparticles: from architecture to function., Chemistry of Materials 26(1), 97-110, 2014, DOI: 10.1021/cm402131n.
[18] Tame, Mark S., K. R. McEnery, Ş. K. Özdemir, Jinhyoung Lee, Stefan A. Maier, and M. S. Kim., Quantum plasmonics., Nature Physics 9(6), 329-340, 2013, DOI: 10.1038/nphys2615.
[19] Breuer, Heinz-Peter, Elsi-Mari Laine, Jyrki Piilo, and Bassano Vacchini., Colloquium: Non-Markovian dynamics in open quantum systems., Reviews of Modern Physics 88(2), 021002, 2016, DOI: 10.1103/RevModPhys.88.021002.
[20] Haikka, Pinja, Suzanne McEndoo, Gabriele De Chiara, G. M. Palma, and Sabrina Maniscalco., Quantifying, characterizing, and controlling information flow in ultracold atomic gases., Physical Review A 84(3), 031602, 2011, DOI: 10.1103/PhysRevA.84.031602.
[21] Smirne, Andrea, Laura Mazzola, Mauro Paternostro, and Bassano Vacchini., Interaction-induced correlations and non-Markovianity of quantum dynamics., Physical Review A 87(5), 052129, 2013, DOI: 10.1103/PhysRevA.87.052129.
[22] Chin, Alex W., Susana F. Huelga, and Martin B. Plenio., Quantum metrology in non-Markovian environments., Physical review letters 109(23), 233601, 2012, DOI: 10.1103/PhysRevLett.109.233601.
[23] Groeblacher, Simon, A. Trubarov, N. Prigge, G. D. Cole, M. Aspelmeyer, and J. Eisert., Observation of non-Markovian micromechanical Brownian motion., Nature Communications 6(1), 7606, 2015, DOI: 10.1038/ncomms8606.
[24] Huelga, Susana F., Angel Rivas, and Martin B. Plenio., Non-Markovianity-assisted steady state entanglement., Physical review letters 108(16), 160402, 2012, DOI: 10.1103/PhysRevLett.108.160402.
[25] Mazzola, Laura, E-M. Laine, H-P. Breuer, Sabrina Maniscalco, and Jyrki Piilo., Phenomenological memory-kernel master equations and time-dependent Markovian processes., Physical Review A 81(6), 062120, 2010, DOI: 10.1103/PhysRevA.81.062120.
[26] Rebentrost, Patrick, and Alán Aspuru-Guzik., Communication: Exciton–phonon information flow in the energy transfer process of photosynthetic complexes., The Journal of Chemical Physics 134(10), 101103, 2011, DOI: 10.1063/1.3563617.
[27] Deffner, Sebastian, and Steve Campbell., Quantum speed limits: from Heisenberg’s uncertainty principle to optimal quantum control., Journal of Physics A: Mathematical and Theoretical 50(45), 453001, 2017, DOI: 10.1088/1751-8121/aa86c6.
[28] Lloyd, Seth., Ultimate physical limits to computation., Nature 406(6799), 1047-1054, 2000, DOI: 10.1038/35023282.
[29] Lloyd, Seth., Computational capacity of the universe., Physical Review Letters 88(23), 237901, 2002, DOI: 10.1103/PhysRevLett.88.237901.
[30] Caneva, Tommaso, Michael Murphy, Tommaso Calarco, Rosario Fazio, Simone Montangero, Vittorio Giovannetti, and Giuseppe E. Santoro., Optimal control at the quantum speed limit., Physical review letters 103(24), 240501, 2009, DOI: 10.1103/PhysRevLett.103.240501.
[31] Dehdashti, Sh, M. Bagheri Harouni, B. Mirza, and H. Chen., Decoherence speed limit in the spin-deformed boson model., Physical Review A 91(2), 022116, 2015, DOI: 10.1103/PhysRevA.91.022116.
[32] Giovannetti, Vittorio, Seth Lloyd, and Lorenzo Maccone., Advances in quantum metrology., Nature photonics 5(4), 222-229, 2011, DOI: 10.1038/nphoton.2011.35.
[33] Zhang, Y.-J., et al., Quantum speed limit for arbitrary initial states. Scientific Reports, 4(1), 1-6, 2014, DOI: 10.1038/srep04890.
[34] Iliopoulos, Nikos, Ioannis Thanopulos, Vassilios Yannopapas, and Emmanuel Paspalakis., Counter-rotating effects and entanglement dynamics in strongly coupled quantum-emitter–metallic-nanoparticle structures., Physical Review B 97(11), 115402, 2018, DOI: 10.1103/PhysRevB.97.115402.
[35] Hakami, Jabir, and M. Suhail Zubairy., Nanoshell-mediated robust entanglement between coupled quantum dots., Physical Review A 93(2), 022320, 2016, DOI: 10.1103/PhysRevA.93.022320.
[36] Thanopulos, I., V. Yannopapas, and E. Paspalakis., Non-Markovian dynamics in plasmon-induced spontaneous emission interference., Physical Review B 95(7), 075412, 2017, DOI: 10.1103/PhysRevB.95.075412.
[37] Johnson, Peter B., and R-WJPrB Christy., Optical constants of the noble metals., Physical Review B 6(12), 4370, 1972, DOI: 10.1103/PhysRevB.6.4370.
[38] Thanopulos, Ioannis, Kostas Blekos, Panayotis Kalozoumis, Vasilios Karanikolas, and Emmanuel Paspalakis., Memory effects and quantum speedup for a quantum emitter near a molybdenum disulfide nanodisk., Physica E: Low-dimensional Systems and Nanostructures 133, 114780, 2021, DOI: 10.1016/j.physe.2021.114780.
[39] Zeng, Hao-Sheng, Ning Tang, Yan-Ping Zheng, and Guo-You Wang., Equivalence of the measures of non-Markovianity for open two-level systems., Physical Review A 84(3), 032118, 2011, DOI: 10.1103/PhysRevA.84.032118.
[40] Thanopulos, Ioannis, Vasilios Karanikolas, and Emmanuel Paspalakis. "Spontaneous emission of a quantum emitter near a graphene nanodisk under strong light-matter coupling." Physical Review A 106(1), 013718, 2022, DOI: 10.1103/PhysRevA.106.013718.