Influence of Initial Conditions on Optical Characteristics of Cu Ion-exchanged Glasses

Document Type : Research Paper

Authors

1 Associate Professor, Photonic Materials Research Laboratory, Department of Physics, University of Tehran, Tehran, Iran

2 M. Sc. Student, Photonic Materials Research Laboratory, Department of Physics, University of Tehran, Tehran, Iran

Abstract

In the present article, we report the results of a study of the optical and spectroscopic properties of Cu ion-exchanged glasses. The well-known ion-exchange method is used and developed for the specific present work. A soda-lime glass plate is doped ionic copper nanoparticles. It is found that the initial temperature and the specific combinations of the glass substrates have essential roles in the physical properties of the produced doped glasses. Therefore, we made two different types of copper-ion-exchanged glasses: green and red colored ones. Each type has its unique optical and spectroscopic properties due to the initial conditions of the ion-exchange process. Using absorption spectroscopy, and surface plasmon resonance studies, we can conclude that the different initial temperature of the samples in the ion-exchange procedure crucially influences the color of the samples, their characteristic index of refraction, photoluminescence, and the reflection spectra. The color of the samples is related to the type and shape of the ionic Cu-clusters, formed in the glass matrix.

Keywords

Main Subjects


[1] Kreibig U., Vollmer M., Optical properties of metal clusters. Springer, Berlin, 1995.
[2] Johnson P. B., and Christy R. W., “Optical constants of the noble metals”, Phys. Rev. B, 6, 4370, 1972. DOI: https://doi.org/10.1103/PhysRevB.6.4370
[3] P Jain. K., Huang X., El-Sayed I. H., and El-Sayed M. A., “Noble metals on the nanoscale: optical and photothermal properties and some applications in imaging, sensing, biology, and medicine”, Acc. of Chem. Research, 41, 1578, 2008. DOI: https://doi.org/10.1021/ar7002804
[4] Link S., Wang Z. L., and El-Sayed M., “Alloy formation of gold-silver nanoparticles and the dependence of the plasmon absorption on their composition”, J. Phys. Chem. B, 103, 3529, 1999.
[5] Freestone I., Meeks N., Sax M., and Higgitt C., “The Lycurgus cup—a roman nanotechnology”, Gold Bulletin, 40, 270, 2007. DOI: http://dx.doi.org/10.1007/BF03215599
[6] Do Y. S., Park J. H., Hwang B. Y., Lee S. M., Ju B. K., and Choi K. C., “Plasmonic Color Filter and its Fabrication for Large‐Area Applications”, Adv. Opt. Mat., 1, 133, 2013. DOI: 10.1088/2399-1984/aa6560
[7] Yokogawa S., Burgos S. P., and Atwater H. A., “Plasmonic color filters for CMOS image sensor applications”, Nano Lett., 12, 4349, 2012. DOI: https://doi.org/10.1021/nl302110z
[8] Zhao J., Zhang X., Yonzon C. R., Haes A. J., and Van Duyne R.P., "Localized surface Plasmon resonance biosensors", Nanomedicine, 1, 219, 2006. DOI: https://doi.org/10.2217/17435889.1.2.219
[9] Najafi S .I., “Introduction to glass integrated optics”, Artech House, Boston, 1992.
[10] Nahal A., Mostafavi-Amjad J.,  Ghods A. , Khajehpour M. , Reihani S. , Kolahchi M. R.  "Laser-induced dendritic micro-structures in Ag+ doped glasses", J. Appl. Phys. B, 100, 053503, 2006. DOI: https://doi.org/10.1063/1.2336493
[11] Nahal A., Ghodsi G., "Investigation of refractive index specifying parameters for planar waveguides produced by the ion-exchange method, by means of Brewster's angle measurements", Proc. 10th Gavazang Meeting on Cond. Mat. Phys., 13, IASBS, Zanjan, Iran , 2008.(In Persian)
[12] Nahal A. , Mahjour‑Shafei M. , Hosseini S. R. , “Index of refraction variation and photoluminescence quenching in silver‑ion‑exchanged glasses, due to interaction with low‑energy He+ beam” J. Mat. Sc.: Mat. in Electron. 31, 5499 (2020), DOI: https://doi.org/10.1007/s10854-020-03115-1
[13] Nahal A., Hosseini S.R., and Mahjour-Shafiei M., “Ion-beam lithography for fabrication of diffractive optical phase elements in silver-ion-exchanged glasses”, J Mater Sci: Mater Electron 32, 23349, 2021. DOI: https://doi.org/10.1007/s10854-021-06819-0
[14] Nahal A., Talebi R., Miri M.F., “Thermo-electric-induced dichroism in ion-exchanged glasses: a candidate mechanism for the alignment of silver nanoparticles”, Appl. Phys. A, 106, 941 (2012), DOI: https://doi.org/ 10.1007/s00339-011-6714-4
[15] Nahal A., Jalehdoost A., Hassani Kh. and Farokhniaee A., “Variation of index of refraction in the ion-exchanged glasses with the evolution of ionic and neutral silver nano-clusters”, Eur. Phys. J.- Appl. Phys. 53, 10701, 2011. DOI: https://doi.org/10.1051/epjap/2010100075
[16] Nahal A., Shapouri K., “Linear dichroism, produced by thermo-electric alignment of silver nanoparticles on the surface of ion-exchanged glass”, Appl. Surf. Sc. 255, 7946, 2009. DOI: https://doi.org/10.1016/j.apsusc.2009.04.177
[17] Nahal A., Moslehirad F., "Laser-induced anisotropy in Ag+ -doped glasses", J. Mater. Sc. 42, 9075, 2007. DOI: 10.1007/s10853-007-1894-1
[18] Gonella F., Quaranta A., Padovani S. et al., “Copper diffusion in ion-exchanged soda-lime glass.”, Appl. Phys. A81, 1065, 2005. DOI: https://doi.org/10.1007/s00339-004-2949-7
[19] Varshneya A. K., “Chemical Strengthening of Glass: Lessons Learned and Yet to Be Learned”, Int. J. Appl. Glass. Sci., 1, 131, 2010.
[20] Varshneya A. K., “The physics of chemical strengthening of glass: Room for a new view”, J. Non-Cryst. Solids, 356, 2289, 2010. DOI: https://doi.org/10.1016/j.jnoncrysol.2010.05.010
[21] Araujo R., “Thermodynamics of ion exchange”, J. Non-Cryst. Sol. 349 230, 2004. DOI: http://dx.doi.org/10.1016/j.jnoncrysol.2004.08.147
[22] Araujo R., “Interdiffusion in a one-dimensional interacting system”, J. Non-Cryst. Solids, 152, 70, 1993. DOI: https://doi.org/10.1016/0022-3093(93)90445-4
[23] Jost W., “Diffusion in solids, liquids and gases”, Academic Press, 1960.
[24] Mazzoldi P., Carturan S., Quaranta A., Sada C. and Sglavo V. M., "Ion exchange proce: History, evolution and applications", Rivista del Nuovo Cimento, 36, 397, 2013. DOI: DOI 10.1393/ncr/i2013-10092-1
[25] Gonella F. , Caccavale F. , Bogomolova L. D. , d’Acapito F. , Quaranta A. , ”Experimental Study of Copper-Alkali Ion Exchange in Glass”, Appl. Phys. A, 83, 1200, 1998. DOI: https://doi.org/10.1063/1.366816
[26] Borsella E., Dal Vecchio A., Garcı`a M. A., Sada C., Gonella F., Polloni R. Quaranta A., van Wilderen L. J. G. W., “Copper doping of silicate glasses by the ion-exchanged technique: A photoluminescence spectroscopy study”, J. Appl. Phys., 91, 90, 2002. DOI: http://dx.doi.org/10.1063/1.1421241
[27]   Mahapatra O., Bhagat, Gopalakrishnan C. , Arunachalam K. , ”Ultrafine dispersed CuO nanoparticles and their antibacterial activity”, J. Exp. Nano Sci., 3. 185, 2008. DOI: http://dx.doi.org/10.1080/17458080802395460
[28] Nahal A., Khalesifard H. R. M., and Mostafavi-Amjad J., “Photothermal-induced dichroism and micro-cluster formation in Ag+ -doped glasses”, Appl. Phys. B, 79, 513, 2004. DOI: https://doi.org/10.1007/s00340-004-1578-3
[29] Rouhi A., “Study on optical properties of glasses doped by Cu+ ion” M.Sc. Thesis in Physics, Department of Physics, University of Tehran, 2019. (In Persian)
[30] Ti, Y. Qiu F.,  Cao Y.,   Jia L.,   Qin W.,  Zheng J.,   and Farrell G., “Photoluminescence of copper ion exchange BK7 glass planar waveguides”, J. Mater. Sci. 43, 7073, 2008. DOI: http://dx.doi.org/10.1007/s10853-008-3057-4
[31Xia Hong-yunTeng Chuan-XinXiao-Wei, Jie Z., "Refractive index profiles of copper ion exchange glass planar waveguides", Chin. Phys. Lett. 2, 084215, 2012. DOI: https://doi.org/10.1088/0256-307X/29/8/084215