Research Paper: Design of Simple Plasmonic Sensors based on Graphene Circles in THZ Region

Document Type : Research Paper

Authors

1 M. Sc. Graduated, Department of Physics, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran

2 Assistant Professor, Department of Physics, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran

Abstract

The design of optical sensors in the THz region for application in various fields of biological and medical sciences has significantly expanded in the last two decades. In this paper, we proposed an optical sensor using two dimensional and periodic structure of graphene rings on the dielectric substrate. The surface plasmon resonance mechanism was employed to design the refractive index sensor. First, by changing the geometric parameters of the structure, the optimal parameters for the sensor performance have been extracted. Then, the sensor's sensitivity has been checked regarding the change in the refractive index of the surrounding environment. The sensitivity of the proposed simple structure is 11.2 μm/RIU and is larger than previous works. Also, increasing the refractive index of the measured medium diminished the quality of sensor operation. The proposed sensor can be used to detect environmental air pollution by proper calibration. The Lumerical software which is based on the finite difference time domain method is used to this end.

Keywords

Main Subjects


[1] Oliveira L. C., Lima A. M. N., Thirstrup C., Neff H. F., “Surface plasmon resonance sensors: a materials guide to design and optimization”, Springer, New York, 1st ed, 11-25, 2015.
[2] Maier S. A., “Plasmonics: Fundamentals and Applications Springer”, Springer, New York, 1st ed, 1-88, 2007.
[3] Sovizi M. and Aliannezhadi, M., “Localized surface plasmon resonance (LSPR) of coupled metal nanospheres in longitudinal, transverse and three-dimensional coupling configurations”, Optik 252, p.168518, 2022. https://doi.org/10.1016/j.ijleo.2021.168518.
[4] Homola J., Yee S. S., Gauglitz G., “Surface plasmon resonance sensors”, Sensors and actuators B: Chemical 54, 3-15, 1999. https://doi.org/10.1016/S0925-4005(98)00321-9.
[5] Danyiyal W. M. E. M. M., Wing Fen Y., Fauzi N. I. M., Hashim H. S., Ramdzan N. S., Omar N. A. S. Omar, “Recent advances in surface plasmon resonance optical sensors for potential application in environmental monitoring”, Sens. Mater 32(12), 4191-4200, 2020. https://doi.org/10.18494/SAM.2020.3204.
[6] Ogawa S, Fukushima S and Shimatani M, “Graphene Plasmonics in Sensor Applications: A Review”, Sensors 20, 3563, 2020. https://doi.org/10.3390/s20123563.
[7] Sovizi M. and Aliannezhadi, M., “Design and simulation of high-sensitivity refractometric sensors based on defect modes in one-dimensional ternary dispersive photonic crystal”, JOSA B 36(12), pp.3450-3456, 2019. https://doi.org/10.1364/JOSAB.36.003450.
[8] Aliannezhadi M., Mozaffari M.H. and Amirjan, F., “Optofluidic R6G microbubble DBR laser: A miniaturized device for highly sensitive lab-on-a-chip biosensing”, Photonics and Nanostructures-Fundamentals and Applications 53, p.101108, 2023. https://doi.org/10.1016/j.photonics.2023.101108.
[9] Zhaohe D., Luqi L., Zhong Z., “Strain engineering of 2D materials: issues and opportunities at the interface”, Advanced Materials 31(45), 1805417, 2019. https://doi.org/10.1002/adma.201805417.
[10] Glavin N. R., Rao R., Varshney V., Bianco E., Apte A., Roy A, Ringe E, Ajayan P., “Emerging applications of elemental 2D materials”, Advanced Materials 32(7), 1904302, 2020. https://doi.org/10.1002/adma.201904302.
[11] Geim A. K., and K. S. Novoselov, “The Rise of Graphene”, Nature Materials 6, 3-183, 2007. https://doi.org/10.1038/nmat1849.
[12] Katsnelson M. I., “Graphene: Carbon in Two Dimensions”, Materials Today 10, 1-20, 2007, https://doi.org/10.1016/S1369-7021 (06)71788-6.
[13] Pang S., Hernandez Y., Feng X., Müllen K., “Graphene as transparent electrode material for organic electronics”, Adv. Mater 23, 2779–2795, 2011. https://doi.org/10.1002/adma.201100304.
[14] Lee C, Wei X, Kysar JW, Hone J., “Measurement of the elastic properties and intrinsic strength of monolayer graphene”, Science 321, 385-388, 2008. https://doi.org/10.1126/science.1157996.
[15] Taflove A., Hagness S. C., Piket-May M., “Computational Electromagnetics: The Finite-Difference Time-Domain Method”, In the Electrical Engineering Handbook, Elsevier Inc., 629-670, 2005. https://doi.org/10.1016/B978-012170960-0/50046-3.
 [16] Liu T., Wang H., Liu Y., Xiao L., Zhou C., Liu Y., Xu C., Xiao S., “Independently tunable dual-spectral electromagnetically induced transparency in a terahertz metal–graphene metamaterial”, J. Phys. D Appl. Phys. 51, 415105, 2018. https://doi.org/10.1088/1361-6463/aadb7f.
                                                                                                                                         
[17] Shangguan Q., Chen Z., Yang H., Chrng S., Yang W., Yi Z., Wu X., Wang
S., Yi Y., Wu P., “Design of ultra-narrow band graphene refractive index sensor”, Sensors 22(17), 6483, 2022. https://doi.org/10.3390/s22176483.
[18] Cheng Y., Zho X., Li J., Chen F., Luo H., Wu L., “Terahertz broadband tunable reflective cross-polarization convertor based on complementary cross-shaped graphene metasurface”, Physica E: Low-dimensional Systems and Nanostructures 134, 114893, 2021. https://doi.org/10.1016/j.physe.2021.114893.
[19] Chen H., Chen, Z., Yang H., Wen L., Yi Z., Zhou Z., Dai B., Zhang J., Wue X., Wuf P., “Multi-mode surface plasmon resonance absorber based on dart-type single-layer grapheme”, RSC Adv. 12, 7821, 2022. https://doi.org/10.1039/D2RA00611A.
[20] Liu J., Wang W., Xie F., Zhang X., Zhou X., Yuan Y., Wang L., “Excitation of Surface Plasmon Polariton Modes with Double-Layer Gratings of Graphene”, Nanomaterials 12(7), 1144, 2022.‏ https://doi.org/10.3390/nano12071144.
[21] Cen C., Lin H., Huang J., Liang C., Chen X., Tang Y., Yi Z., Ye X., Liu J., Yi Y., Xiao S., “A tunable plasmonic refractive index sensor with nanoring-strip graphene arrays”, Sensors 18(12), 4489, 2018. https://doi.org/10.3390/s18124489.