[1] Sum, T. C., Mathews, N., "Advancements in perovskite solar cells: photophysics behind the photovoltaics", Energy & Environmental Science, 7(8), 2518-2534, 2014.
[2] Elangovan, N. K., & Arumugam, S., "Chayaver: Indian-traditional dye to modern dye-sensitized solar cells", Materials Research Express, 6(6), 066206, 2019.
[3] Al-Ashouri, A., Köhnen, E., Li, B., et al., "Monolithic perovskite/silicon tandem solar cell with> 29% efficiency by enhanced hole extraction", Org, 370(6522), 1300–1309, 2020. https://doi.org/10.1126/science.abd4016
[4] Chung, J., Shin, S., et al., "Record-efficiency flexible perovskite solar cell and module enabled by a porous-planar structure as an electron transport layer", Energy & Environmental Science , 13(12), 4854-4861, 2020.
[5] Lee, J., Jin, I., & Jung, J.W., "Binary-mixed organic electron transport layers for planar heterojunction perovskite solar cells with high efficiency and thermal reliability", Chemical Engineering Jornal , 420, 129678, 2021.
[6] Yao, H., Zhao, J., et al., "Research and progress of black metastable phase CsPbI 3 solar cells", Materials Chemistry Frontiers, 5(3), 1221-1235, 2021.
[7] Chen, S., Xiao, X., Gu, H., et al., "Iodine reduction for reproducible and high-performance perovskite solar cells and modules", Science Advances, 7(10), eabe8130, 2021. https://doi.org/10.1126/SCIADV.ABE8130
[8] Chen, Z., Cheng, Y., et al., "In-situ atmospheric-pressure dielectric barrier discharge plasma treated CH3NH3PbI3 for perovskite solar cells in regular architecture", Applied Surface Science, 437, 468-475, 2019.
[9] Li, Z., Gao, Y., et al., "cPCN-Regulated SnO 2 composites enables perovskite solar cell with efficiency beyond 23%", Springer, Nano-micro letters, 13, 1-16, 2021.
[10] Wang, H., Dong, Z., Liu, et al., "Roles of Organic Molecules in Inorganic CsPbX3 Perovskite Solar Cells", Advanced Energy Materials, 11(1), 2002940, 2021. https://doi.org/10.1002/AENM.202002940
[11] Pham, H. D., Chien, T., et al., "Development of dopant‐free organic hole transporting materials for perovskite solar cells", Advanced Energy Materials, 10(13), 1903326, 2020. https://doi.org/10.1002/aenm.201903326
[12] Pham, H. D., Om., Wu, Z., et al., "Low‐Cost Alternative High‐Performance Hole‐Transport Material for Perovskite Solar Cells and Its Comparative Study with Conventional SPIRO‐OMeTAD", Advanced Electronic Materials, 3(8), 1700139, 2017.
https://doi.org/10.1002/aelm.201700139
[13] Manser, J., & Kamat, P. V., "Band filling with free charge carriers in organometal halide perovskites", Nature Photonic, 8(9), 737-743, 2014. https://doi.org/10.1039/C4TA04994B
[14] De Wolf, S., Holovsky, J., et al., "Organometallic halide perovskites: sharp optical absorption edge and its relation to photovoltaic performance", The journal of physical chemistry letters, 5(6), 1035-1039, 2014.
[15] Stranks, S. D., Eperon, G. E.,et al., "Electron-hole diffusion lengths exceeding 1 micrometer in an organometal trihalide perovskite absorber", Science, 342(6156), 341–344, 2013. https://doi.org/10.1126/SCIENCE.1243982
[16] D’innocenzo, V., Grancini, G.,et al., "Excitons versus free charges in organo-lead tri-halide perovskites", Nature communication, 5(1), 3586,
[17] Sahare, S., Pham, H. D.,et al., "Emerging Perovskite Solar Cell Technology: Remedial Actions for the Foremost Challenges", Advanced Energy Materials, 11(42), 2101085, 2021. https://doi.org/10.1002/AENM.202101085
[18] Aharon, S., Dymshits, A., et al., "Temperature dependence of hole conductor free formamidinium lead iodide perovskite based solar cells", Journal of Materials Chemistry A, 3(17), 9171-9178, 2015.
[19] Green, M. A., Ho-Baillie, A., & Snaith, H. J., "The emergence of perovskite solar cells", Nature Photonics, 8(7), 506-514 , 2014. https://doi.org/10.1038/NPHOTON.2014.134
[20] Egger, D. A., & Kronik, L., "Role of dispersive interactions in determining structural properties of organic-inorganic halide perovskites: Insights from first-principles calculations", Journal of Physical Chemistry Letters, 5(15), 2728–2733, 2014. https://doi.org/10.1021/JZ5012934
[21] Choi, J., & Billinge, S. J., "Perovskites at the nanoscale: from fundamentals to applications", Nanoscale, 8(12), 6206-6208, 2016.
[22] Seo, J., Noh, J. H., & Seok, S. I., "Rational Strategies for Efficient Perovskite Solar Cells", Accounts of Chemical Research, 49(3), 562–572, 2016. https://doi.org/10.1021/ACS.ACCOUNTS.5B00444
[23] Green, M., Dunlop, E., & Yoshita, M., "Solar cell efficiency tables", Progress in photovoltaics: research and applications, 29(1), 3-15, 2014. https://doi.org/10.1038/NPHOTON.2014.134
[24] Stranks, S. D., & Snaith, H. J., "Metal-halide perovskites for photovoltaic and light-emitting devices", Nature Nanothecnology, 10(5), 391-402,
[25] Zhang, Y., Chen, S., et al., "Intrinsic instability of the hybrid halide perovskite semiconductor CH3NH3PbI3", Chinese Physics Letters, 35(3), 036104, , 2018.
[26] Luo, Y., Xie, F., Chen, J., et al., "Uniform stepped interfacial energy level structure boosts efficiency and stability of CsPbI2Br solar cells", Advanced Functional Materials, 31(34), 2103316, 2021.
[27] Ye, T., Wang, X., et al., "Localized electron density engineering for stabilized B-γ CsSnI3-based perovskite solar cells with efficiencies> 10%", ACS Energy Letters, 6(4), 1480-1489, 2021.
[28] Chen, L., Lee, C., et al., "Synthesis and optical properties of lead-free cesium tin halide perovskite quantum rods with high-performance solar cell application", The Journal of Physical Chemistry Letters,7(24), 5028-5035, 2016.
[29] Kulbak, M., Gupta, S.,et al., "Cesium enhances long-term stability of lead bromide perovskite-based solar cells", The Journal of Physical Chemistry Letters, 7(1), 167-172,
[30] Wang, R., Mujahid, M., et al., "A review of perovskites solar cell stability", Advanced Functional Materials, 29(47), 1808843, 2019. https://doi.org/10.1002/adfm.201808843.
[31] Akbulatov, A., Luchkin, S., et al., "Probing the intrinsic thermal and photochemical stability of hybrid and inorganic lead halide perovskites", The Journal of Physical Chemistry Letters, 8(6), 1211-1218, 2017.
[32] Eperon, G., Paternò, G., et al., "Inorganic caesium lead iodide perovskite solar cells", Journal of Materials Chemistry A, 3(39), 19688-19695,
[33] Zeng, Q., Zhang, X., et al., "Inorganic CsPbI2Br Perovskite Solar Cells: The Progress and Perspective", Solar RRL, 3(1), 1800239, 2019. https://doi.org/10.1002/SOLR.201800239
[34] Chang, C. ;, Fang, X. , et al., "Printable CsPbI3 perovskite solar cells with PCE of 19% via an additive strategy", Wiley Online Library, 32(40), 2020. https://doi.org/10.1002/adma.202001243
[35] Yu, Z., Ma, Q., Liu, B., et al., "Oriented tuning the photovoltaic properties of γ-RbGeX3 by strain-induced electron effective mass mutation", Journal of Physics D: Applied Physics, 50(46), 465101, 2017.
[36] Elangovan, N. K., & Sivaprakasam, A., "Investigation of parameters affecting the performance of Perovskite solar cells", Molecular Crystals and Liquid Crystals, 710(1), 66–73, 2020. https://doi.org/10.1080/15421406.2020.1829425
[37] Siddiqui, H., "Lead-free perovskite quantum structures towards the efficient solar cell", Materials Letters, 249, 99–103, 2019. https://doi.org/10.1016/J.MATLET.2019.04.051
[38] Azri, F., Meftah, A., Sengouga, N., "Electron and hole transport layers optimization by numerical simulation of a perovskite solar cell", Solar Energy, 181, 372-378,
[39] Pandey, R., "Microstructures, Numerical simulations: Toward the design of 27.6% efficient four-terminal semi-transparent perovskite/SiC passivated rear contact silicon tandem solar cell", Superlattices and Microstructures,100, 656-666 , 2016.
[40] Minemoto, T., "Device modeling of perovskite solar cells based on structural similarity with thin film inorganic semiconductor solar cells", Journal of Applied Physics, 116(5), 2014.
[41] Kavan, L., & Gratzel, M., "Highly efficient semiconducting TiO2 photoelectrodes prepared by aerosol pyrolysis", Electrochemical Acta, 40(5), 643-652, 1995.
[42] Agarwal, S., Seetharaman, M., et al., "On the uniqueness of ideality factor and voltage exponent of perovskite-based solar cells", The Journal of Physical Chemistry Letters,, 5(23), 4115–4121, 2014. https://doi.org/10.1021/jz5021636
[43] Kim, H. S., & Park, N. G., "Parameters affecting I-V hysteresis of CH3NH3PbI3 perovskite solar cells: Effects of perovskite crystal size and mesoporous TiO2 layer", Journal of Physical Chemistry Letters, 5(17), 2927–2934, 2014. https://doi.org/10.1021/JZ501392M
[44] Snaith, H. J., & Grätzel, M., "Electron and hole transport through mesoporous TiO2 infiltrated with spiro-MeOTAD", Advanced Materials, 19(21), 3643–3647, 2007. https://doi.org/10.1002/ADMA.200602085
[45] Poplavskyy, D., & Nelson, J., "Nondispersive hole transport in amorphous films of methoxy-spirofluorene-arylamine organic compound", Journal of Applied Physics, 93(1), 341-346, 2003. https://doi.org/10.1063/1.1525866
[46] Minemoto, T., & Murata, M., "Impact of work function of back contact of perovskite solar cells without hole transport material analyzed by device simulation", Current Applied Physics,14(11), 1428-1433, 2014.
[47] Houari, M., Bouadjemi, B., et al., "Semiconductor behavior of halide perovskites AGeX3 (A = K, Rb and Cs; X = F, Cl and Br): first-principles calculations", Indian Journal of Physics, 94(4), 455–467, 2020. https://doi.org/10.1007/S12648-019-01480-0
[48] Zandi, S., "Finite element simulation of perovskite solar cell: A study on efficiency improvement based on structural and material modification", Solar Energy, 179, 298-306, 2019.
[49] Kalogirou S. A.," Solar Energy Engineering: Processes and Systems" - Elsevier, Google Books. Process, Syst,1 st ed. Biritish Library, 1-755, 2009. Retrieved September 3, 2023.