Research Paper: Shocks and Energy Transfer in Solar Atmospheric Jets

Document Type : Research Paper

Authors

1 M. Sc. Graduated, Department of Physics, Tafresh University, Tafresh, Iran.

2 Associate Professor, Department of Physics, Tafresh University, Tafresh, Iran

Abstract

The aim is to study nonlinear wave dynamics in solar spicules and jets. The life of jets in the context of Alfven wave dynamics is focused. Here, further insight into the solar atmospheric effects together with initial conditions on the dynamics of Alfven waves along with the characteristic parameters of the spicule or jet itself are provided. Results are based on the theory of magnetohydrodynamics. the location of shock formation by the interplay of the internal and external plasma-beta conditions together with the initial steady flow speeds which are rooted in the initiation location of the solar jet are illustrated. It was known that the plasma-beta of a solar jet affects the shock formation time of torsional Alfven waves. However, its efficiency is shown to be dependent on the external plasma beta conditions. The shock formation time for plasma-beta conditions over unity is directly proportional to the plasma-beta, similar to plasma-beta conditions equal to or below unity. In the case where the plasma-beta inside the magnetic structure is small, the shock formation time is accelerated by increasing the external plasma-beta. In photospheric conditions, as for coronal conditions, the time of shock formation is inversely proportional to the external plasma-beta. When the internal plasma-beta is fixed, for various steady flow speeds, the external plasma-beta accelerates the formation of shocks. These results help us to better understand the role of Alfven waves in solar jets in the transfer of energy to the solar system.

Keywords

Main Subjects


[1] Rankin R., Frycz P., Tikhonchuk V. T., and Samson J. C., “Nonlinear standing shear Alfven waves in the Earth's magnetosphere”, Journal of Geophysiacal Research 99, 21291-21302, 1994. https://doi.org/10.1029/94JA01629.
[2] V. T. Tikhonchuk V. T., Rankin R., Frycz P., and Samson J. C., “Nonlinear dynamics of standing shear Alfven waves”, Physics of Plasmas 2, 501-515, 1995. https://doi.org/10.1063/1.870975.
[3] Shukla P. K., and Bingham R., “Generation of Density Enhancements by Magnetohydrodynamic Waves”, Physica Scripta T107, 250, 2004. https://doi.org/10.1238/Physica.Topical.107a00250.
[4] Verwichte E., Nakariakov V. M., and Longbottom A. W., “On the evolution of a nonlinear Alfven pulse”, Journal of Plasma Physics 62, 219-232, 1999. https://doi.org/10.1017/S0022377899007771.
[5] Cirtain J. W., Golub L., Lundquist L., van Ballegooijen A., Savcheva A., Shimojo M., DeLuca E., Tsuneta S., Sakao T., Reeves K., Weber M., Kano R., Narukage N., and Shibasaki K., “Evidence for Alfven Waves in Solar X-ray Jets”, Science 318, 1580-1582, 2007.  https://doi.org/10.1126/science.1147050.
[6] Vasheghani Farahani S., Van Doorsselaere T., Verwichte E., and Nakariakov V. M,. “Propagating transverse waves in soft X-ray coronal jets”, A&A 498, L29-L32, 2009. https://doi.org/10.1051/0004-6361/200911840.
[7] D. B. Jess, M. Mathioudakis, R. Erdelyi, P. J. Crockett, F. P. Keenan, and D. J. Christian. Alfven Waves in the Lower Solar Atmosphere. Science 323, 1582-1584, 2009. https://doi.org/10.1126/science.1168680.
[8] Vasheghani Farahani S., Nakariakov V. M., and Van Doorsselaere T., “Longwavelength torsional modes of solar coronal plasma structures”, A&A 517, A29, 2010. https://doi.org/10.1051/0004-6361/201014502.
[9] Vasheghani Farahani S., Ghanbari E., ghaffari G., and Safari H., “Helical and rotating plasma structures in the solar atmosphere”, A&A 599, A19, 2017.  https://doi.org/10.1051/0004-6361/201629563.
[10] Mozafari Ghoraba A., Abedi A., Vasheghani Farahani S., and Khorashadizadeh S. M., “Helical and rotating plasma structures in the solar atmosphere”, A&A 618, A82, 2018.  https://doi.org/10.1051/0004-6361/201832620.
[11] Vasheghani Farahani S., Nakariakov V. M., Van Doorsselaere T., and Verwichte E., “Nonlinear long-wavelength torsional Alfvén waves”, A&A 526, A80, 2011. https://doi.org/10.1051/0004-6361/201016063
[12] Vasheghani Farahani S. and Hejazi S. M., “Coronal jet collimation by nonlinear induced flows”, ApJ 844,148, 2017. https://doi.org/10.3847/1538-4357/aa7da5. 
[13] Mozafari Ghoraba A. and Vasheghani Farahani S., “Properties of nonlinear torsional waves effective on solar swirling plasma motions”, ApJ 869, 93, 2018. https://doi.org/10.3847/1538-4357/aaec81. 
[14] S. Vasheghani Farahani, S. M. Hejazi, and  M. R. Boroomand M. R., “Torsional Alfvén Wave Cascade and Shocks Evolving in Solar Jets”, ApJ 906, 70, 2021. https://doi.org/10.3847/1538-4357/abca8c. 
[15] Vasheghani Farahani S., Nakariakov V. M., Verwichte E., and Van Doorsselaere T., “Nonlinear evolution of torsional Alfvén waves:, A&A 544, A127, 2012. https://doi.org/10.1051/0004-6361/201219569.
[16] Cho Il-Hyun, Moon Yong-Jae, Cho Kyung-Suk, Nakariakov Valery M., Lee Jin-Yi, and Kim Yeon-Han, “A New Type of Jet in a Polar Limb of the Solar Coronal Hole”, ApJL 844, L38, 2019. https://doi.org/10.3847/2041-8213/ab4799
[17] Van Doorsselaere T. et al., “Coronal heating by MHD waves”, Space Science Reviews 216, 140, 2020. https://doi.org/10.1007/s11214-020-00770-y.
[18] Aschwanden M. J., “Physics of the Solar Corona. An Introduction with Problems and Solutions (2nd edition)”, Springer-Verlag Berlin Heidelberg, 2005. https://doi.org/10.1007/3-540-30766-4.
[19] Zhugzhda Y. D., “Force-free thin flux tubes: Basic equations and stability”, Physics of Plasmas 3, 10-21, 1996. https://doi.org/10.1063/1.871836.