research Paper: Atomic Gradiometer for Recording the Simulated Human Brain Signal in Unshielded Environment

Document Type : Research Paper

Authors

1 Professor, Laser and Plasma Research Institute, Shahid Beheshti University, Tehran, Iran

2 M.Sc. Student, Laser and Plasma Research Institute, Shahid Beheshti University, Tehran, Iran

3 Assistant Professor, Department of Physics, Central Tehran Branch, Islamic Azad University, Tehran, Iran

4 Assistant Professor, Department of Physics, Kharazmi University, Tehran, Iran

Abstract

The fields resulting from the brain's neural activities provide essential information in diagnosing and treating brain diseases such as epilepsy, convulsions, and brain tumors. Recording brain magnetic field signals is one of the non-invasive brain functional imaging methods, which usually requires magnetic shielding besides expensive and bulky instruments. Although atomic magnetometers are inherently less sensitive than superconducting quantum interference devices, they are considered the best candidate for measuring bio-magnetic fields due to their low manufacturing cost, small size, and no need for cryogenic equipment. Atomic magnetometers measure the low-strength brain magnetic fields based on detecting Zeeman energy splitting and recording changes in the laser light intensity passing through an alkali vapor cell. To improve the sensitivity of these magnetometers, it is common to remove homogeneous noises in two magnetometer channels. For this purpose, we have presented a gradiometer to suppress unwanted magnetic noises. This gradiometer consists of two atomic magnetometers capable of detecting the field produced by the human brain in an unshielded environment in the presence of the Earth's magnetic field. The gradiometer has a sensitivity of 900 fT⁄√Hz. The designed and built gradiometer is suitable for detecting brain magnetic fields, which can be expanded as a multichannel to record the map of the brain's magnetic field.

Keywords

Main Subjects


[1] Hämäläinen, M., Hari, R., Ilmoniemi, R.J., Knuutila, J. and Lounasmaa, O.V., “Magnetoencephalography—theory, instrumentation, and applications to noninvasive studies of the working human brain”, RMP 65(2), 413, 1993. https://doi.org/10.1103/RevModPhys.65.413.
[2] Baillet, S., "Magnetoencephalography for brain electrophysiology and imaging", Nat. Neurosci 3, 327-339, 2017. https://doi.org/10.1038/nn.4504.
[3] Vrba, J., Taylor, B., Cheung, T., Fife, A.A., Haid, G., Kubik, P.R., Lee, S., McCubbin, J. and Burbank, M.B., "Noise cancellation by a whole-cortex SQUID MEG system", IEEE Trans. Appl. Supercond 2, 2218-2123, 1995. https://doi.org/ 10.1109/77.403001.
[4] Seki, Y., Kandori, A., Ogata, K., Miyashita, T., Kumagai, Y., Ohnuma, M., Konaka, K. and Naritomi, H., “Note: Unshielded bilateral magnetoencephalography system using two-dimensional gradiometers”, Rev. Sci. Instrum 81(9), 096103, 2010. https://doi.org/10.1063/1.3482154.
[5] Kominis, I.K., Kornack, T.W., Allred, J.C. and Romalis, M.V., "A subfemtotesla multichannel atomic magnetometer", Nature 422(6932), 596-599,2003. https://doi.org/ 10.1038/nature01484.
[6] Xia, H., Ben-Amar Baranga, A., Hoffman, D. and Romalis, M.V., "Magnetoencephalography with an atomic magnetometer", Appl. Phys. Lett 89(21), 211104, 2006. https://doi.org/ 10.1063/1.2392722.
[7] Sheng, J., Wan, S., Sun, Y., Dou, R., Guo, Y., Wei, K., He, K., Qin, J. and Gao, J.H., “Magnetoencephalography with a Cs-based high-sensitivity compact atomic magnetometer”, Rev. Sci. Instrum 88(9), 094304, 2017. https://doi.org/ 10.1063/1.5001730.
[8] Kim, K., Begus, S., Xia, H., Lee, S.K., Jazbinsek, V., Trontelj, Z. and Romalis, M.V., “multi-channel atomic magnetometer for magnetoencephalography: A configuration study”, NeuroImage 89, 143-151, 2014. https://doi.org/ 10.1016/j.neuroimage.2013.10.040.
[9] Boto, E., Holmes, N., Leggett, J., Roberts, G., Shah, V., Meyer, S.S., Muñoz, L.D., Mullinger, K.J., Tierney, T.M., Bestmann, S. and Barnes, G.R., “Moving magnetoencephalography towards real-world applications with a wearable system”, Nature 555(7698), 657-661, 2018. https://doi.org/ 10.1038/nature26147.
[10] Borna, A., Carter, T.R., Colombo, A.P., Jau, Y.Y., McKay, J., Weisend, M., Taulu, S., Stephen, J.M. and Schwindt, P.D., “Non-invasive functional-brain-imaging with an OPM-based magnetoencephalography system”, Plos one 15(1), e0227684, 2020. https://doi.org/ 10.1371/journal.pone.0227684.
[11] Hill, R.M., Boto, E., Holmes, N., Hartley, C., Seedat, Z.A., Leggett, J., Roberts, G., Shah, V., Tierney, T.M., Woolrich, M.W. and Stagg, C.J., “A tool for functional brain imaging with lifespan compliance”, Nat. Commun 10(1), 4785, 2019. https://doi.org/ 10.1038/s41467-019-12486-x .
[12] Sulai, I.A., DeLand, Z.J., Bulatowicz, M.D., Wahl, C.P., Wakai, R.T. and Walker, T.G., "Characterizing atomic magnetic gradiometers for fetal magnetocardiography", Rev. Sci. Instrum 8, 085003, 2019. https://doi.org/ 10.1063/1.5091007.
[13] Ranjbaran, M., Tehranchi, M.M., Hamidi, S.M. and Khalkhali, S. M. H., “Relaxation time dependencies of optically detected magnetic resonance harmonics in highly sensitive Mx magnetometers”, J. Magn. Magn. Mater 469, 522-530, 2019. https://doi.org/ 10.1016/j.jmmm.2018.09.031.
[14] Bison, G., Wynands, R. and Weis, A., “A laser-pumped magnetometer for the mapping of human cardiomagnetic fields”, Appl. Phys B 76, 325-328, 2003. https://doi.org/ 10.1007/s00340-003-1120-z.
[15] Tiporlini, V., & Alameh, K.,"High sensitivity optically pumped quantum magnetometer", Sci. World J, 2013. https://doi.org/ 10.1155/2013/858379.
[16] Ranjbaran, M., Tehranchi, M.M., Hamidi, S.M. and Khalkhali, S.M.H., “Sensitivity optimization of Bell-Bloom magnetometers by manipulation of atomic spin synchronization”, Phys. C: Supercond. Appl 548, 99-102, 2018. https://doi.org/ 10.1016/j.physc.2018.02.011.
[17] Ranjbaran, M., Tehranchi, M.M., Hamidi, S.M. and Khalkhali, S. M. H., “Effects of square-wave magnetic fields on synchronization of nonlinear spin precession for sensitivity improvement of Mx magnetometers”, J. Magn. Magn. Mater 441, 718-723, 2017. https://doi.org/ 10.1016/j.jmmm.2017.06.084.