[1] Rodriguez A.W., Capasso F. and Johnson S.G., The Casimir effect in microstructured geometries, Nat. Photonics 5, 211–221, 2011. https://doi.org/10.1038/nphoton.2011.39
[2] Capasso F., Munday J.N., Iannuzzi D. and Chan H.B., Selected Topics in Quantum Electronics, IEEE Journal,13, 400–414, 2007. https://doi.org/10.1109/jstqe.2007.893082
[3] Ball P., ”Fundamental physics: Feel the force”, Nature, 447, 772–774, 2007. https://doi.org/10.1038/447772a
[4] Goubault C., Jop P., Fermigier M., Baudry J., Bertrand E., and Bibette J., Flexible Magnetic Filaments as Micromechanical Sensors, Phys. Rev. Lett, 91, 26-31,2003. https://doi.org/10.1103/PhysRevLett.91.260802
[5] Saga N. and NakamuraT., Elucidation of propulsive force of microrobot using magnetic fluid, J. Appl. Phys. 91, 7003-7005, 2002. https://doi.org/10.1063/1.1452197
[6] Broer W., ”The Casimir force and micro-electromechanical systems at submicronscale separations”, PhD Thesis, University of Groningen, 2014.
[7] Zhabinskaya D., ”Casimir interactions between scatterers in carbon nanotubes. Publicly accessible Penn Disse- rtations”, PhD Thesis, University of Pennsylvania, 2009.
[8] Bordag M., et al, ”Advances in the Casimir effect”, PhD Thesis, Oxford university press, 145, 2009.
[9] Casimir H.B G., Polder D., The Influence of Retardation on the London-van der Waals Forces, Phys. Rev. 73, 360, 1948 https://doi.org/10.1103/PhysRev.73.360
[10] Dzyaloshinskii I. E., Lifshitz E. M., Pitaevskii L. P., General Theory of Van Der Waals' Forces, Sov. Phys. Usp.4, 153, 1961. https://doi.org/10.1070/PU1961v004n02ABEH003330
[11] Tajik F., ”Casimir torques and lateral forces: in-fluence of optical properties and surface morphology’’, PhD Thesis, University of Groningen, 2018
[12] Hasan M.Z, Kane C.L., Colloquium: Topological Insulators, Rev. Mod. Phys. 82, 3045, 2010. https://doi.org/10.1103/RevModPhys.82.3045
[13] Moore J.E., ”The birth of topological insulators”, Nature (London) 464, 194-198, 2010. https://doi.org/10.1038/nature08916
[14] Grushin A.G., Corteijo A., Tunable Casimir Repulsion with Three-Dimensional Topological Insulators
, Phys. Rev. Lett. 106, 2-14, 2011. https://doi.org/10.1103/PhysRevLett.106.020403
[15] Grushin A.G., Rodriguez-Lopez P., Corteijo A., "Nonlinear Actuation of Casimir Oscillators toward Chaos: Comparison of Topological Insulators and Metals" Phys. Rev. B 84, 045119, 2021. https://doi.org/10.3390/universe7050123
[16] Babamahdi Z., Svetovoy V.B., Yimam D.T., Kooi B.J., Banerjee T., Moon J., Oh S., Enache M., Stöhr M., Palasantzas G., Casimir and electrostatic forces from Bi2Se3 thin films of varying thickness, Phys. Rev. B 103, 16, 2021. https://doi.org/10.1103/PhysRevB.103.L161102
[17] Tajik F., Allameh N., Masoudi A.A, Palasantzas G., Nonlinear actuation of micromechanical Casimir oscillators with topological insulator materials toward chaotic, Chaos 32, 093149, 2022. https://doi.org/10.1063/5.0100542
[18] Coronell V.De., Goncalves A.E., Baldiotti M.C., Batista R.C., “Repulsive Casimir force in stationary axisymmetric spacetimes”, The European Physical Journal C, 82, 50, 2022. https://doi.org/10.1140/epjc/s10052-022-09994-4
[19] Bing S.L., “The Casimir effect in topological matter”, Universe, 7,237,2021. https://doi.org/10.48550/arXiv.2105.11059
[20] Ezawa M., “Topological microelectromechanical systems”, Phys. Rev. B 103, 155425, 2021. https://doi.org/10.1103/PhysRevB.103.155425
[21] Zhang Q., Lee D., Zheng L., Ma X., and et al, “Gigahertz Topological Valley Hall Effect in Nanoelectromechanical Phononic Crystals”, Nature Electronics, 5, 157, 2022. https://doi.org/10.1038/s41928-022-00732-y
[22] Dresselhaus M., Dresselhaus G., Cronin S., Souza Filho A.,” Solid State Properties: From Bulk to Nano”, 2018. https://doi.org/10.1007/978-3-662-55922-2
[23] Tajik F., Sedighi M., Babamahdi Z., Masoudi A. A., Waalkense H., Palasantzaz G., “Dependence of non-equilibrium Casimir forces on material optical properties towards chaotic motion during device actuation”, Chaos 29, 093126, 2019. https://doi.org/10.1063/1.5124308