Influence of Thermal Fluctuation on Attractive and Repulsive Casimir Forces in Microsystem with Topological Insulator Material

Document Type : Research Paper

Authors

1 M. Sc. Student, Department of Condensed Matter Physics, Faculty of Physics, Alzahra University, Tehran, Iran.

2 M. Sc. Graduated, Department of Condensed Matter Physics, Faculty of Physics, Alzahra University, Tehran, Iran

3 Assistant Professor, Department of Condensed Matter Physics, Faculty of Physics, Alzahra University, Tehran, Iran

Abstract

Here, we explore the sensitivity of the Casimir force between two topological insulator plates on thermal fluctuation using weak and strong magnetizations on the surface of plates via Lifshitz theory. Thermal fluctuations between two plates made of topological insulators in vacuum lead to attractive interactions. By considering a weak magnetization, the influence of thermal fluctuations becomes stronger compared to the magnetoelectric effect in the regime of large separations which leads to generating the strong attractive Casimir force. Moreover, by considering strong magnetizations it is observed that thermal effects cannot make a change in the attractive and repulsive Casimir forces, and magnetoelectric effect determines both the magnitude and direction of Casimir forces. In the range of small magnetization, thermal effects have a significant effect on the repulsive Casimir force. It has been shown that at high temperatures, repulsive interaction due to antiparallel magnetization becomes weak, so that they disappear by increasing the separation.

Keywords

Main Subjects


[1]   Rodriguez A.W., Capasso F. and Johnson S.G., The Casimir effect in microstructured geometries, Nat. Photonics 5, 211–221, 2011. https://doi.org/10.1038/nphoton.2011.39
[2]   Capasso F., Munday J.N., Iannuzzi D. and Chan H.B., Selected Topics in Quantum Electronics, IEEE Journal,13, 400–414, 2007. https://doi.org/10.1109/jstqe.2007.893082
[3]   Ball P., ”Fundamental physics: Feel the force”, Nature, 447, 772–774, 2007. https://doi.org/10.1038/447772a
[4]   Goubault C., Jop P., Fermigier M., Baudry J., Bertrand E., and Bibette J., Flexible Magnetic Filaments as Micromechanical Sensors, Phys. Rev. Lett, 91, 26-31,2003. https://doi.org/10.1103/PhysRevLett.91.260802
[5]   Saga N. and NakamuraT., Elucidation of propulsive force of microrobot using magnetic fluid, J. Appl. Phys. 91, 7003-7005, 2002. https://doi.org/10.1063/1.1452197
[6]   Broer W., ”The Casimir force and micro-electromechanical systems at submicronscale separations”, PhD Thesis, University of Groningen, 2014.
[7]   Zhabinskaya D., ”Casimir interactions between scatterers in carbon nanotubes. Publicly accessible Penn Disse- rtations”, PhD Thesis, University of Pennsylvania, 2009.
[8]   Bordag M., et al, ”Advances in the Casimir effect”, PhD Thesis, Oxford university press, 145, 2009.
[9]   Casimir H.B G., Polder D., The Influence of Retardation on the London-van der Waals Forces, Phys. Rev. 73, 360, 1948 https://doi.org/10.1103/PhysRev.73.360
[10]   Dzyaloshinskii I. E., Lifshitz E. M., Pitaevskii L. P., General Theory of Van Der Waals' Forces,  Sov. Phys. Usp.4, 153, 1961. https://doi.org/10.1070/PU1961v004n02ABEH003330
[11]   Tajik F., ”Casimir torques and lateral forces: in-fluence of optical properties and surface morphology’’, PhD Thesis, University of Groningen, 2018
[12]   Hasan M.Z, Kane C.L., Colloquium: Topological Insulators, Rev. Mod. Phys. 82, 3045, 2010. https://doi.org/10.1103/RevModPhys.82.3045
[13]   Moore J.E., ”The birth of topological insulators”, Nature (London) 464, 194-198, 2010. https://doi.org/10.1038/nature08916
[14]  Grushin A.G., Corteijo A., Tunable Casimir Repulsion with Three-Dimensional Topological Insulators
, Phys. Rev. Lett. 106, 2-14, 2011. https://doi.org/10.1103/PhysRevLett.106.020403
[15]   Grushin A.G., Rodriguez-Lopez P., Corteijo A., "Nonlinear Actuation of Casimir Oscillators toward Chaos: Comparison of Topological Insulators and Metals" Phys. Rev. B 84, 045119, 2021. https://doi.org/10.3390/universe7050123
[16]   Babamahdi Z., Svetovoy V.B., Yimam D.T., Kooi B.J., Banerjee T., Moon J., Oh S., Enache M., Stöhr M.,  Palasantzas G., Casimir and electrostatic forces from Bi2Se3 thin films of varying thickness,  Phys. Rev. B 103, 16, 2021. https://doi.org/10.1103/PhysRevB.103.L161102
[17]   Tajik F., Allameh N., Masoudi A.A, Palasantzas G., Nonlinear actuation of micromechanical Casimir oscillators with topological insulator materials toward chaotic, Chaos 32, 093149, 2022. https://doi.org/10.1063/5.0100542
[18]   Coronell V.De., Goncalves A.E., Baldiotti M.C., Batista R.C., “Repulsive Casimir force in stationary axisymmetric spacetimes”, The European Physical Journal C, 82, 50, 2022. https://doi.org/10.1140/epjc/s10052-022-09994-4
[19]   Bing S.L., “The Casimir effect in topological matter”, Universe, 7,237,2021. https://doi.org/10.48550/arXiv.2105.11059
[20]   Ezawa M., “Topological microelectromechanical systems”, Phys. Rev. B 103, 155425, 2021. https://doi.org/10.1103/PhysRevB.103.155425 
[21]   Zhang Q., Lee D., Zheng L., Ma X., and et al, “Gigahertz Topological Valley Hall Effect in Nanoelectromechanical Phononic Crystals”, Nature Electronics, 5, 157, 2022. https://doi.org/10.1038/s41928-022-00732-y
[22]   Dresselhaus M., Dresselhaus G., Cronin S., Souza Filho A.,” Solid State Properties: From Bulk to Nano”, 2018.  https://doi.org/10.1007/978-3-662-55922-2
[23]   Tajik F., Sedighi M., Babamahdi Z., Masoudi A. A., Waalkense H., Palasantzaz G., “Dependence of non-equilibrium Casimir forces on material optical properties towards chaotic motion during device actuation”, Chaos 29, 093126, 2019. https://doi.org/10.1063/1.5124308