Extraordinary Response of Graphene Layered Structures to Incident Light

Document Type : Research Paper

Author

Assistant Professor, Department of Physics, Sarab Branch, Islamic Azad University, Sarab, Iran

Abstract

Multilayered graphene structures have emerged as promising materials for designing novel optical devices due to their unique light-matter interactions. One of the intriguing phenomena observed in these structures is plasmonic resonance, which occurs in specific configurations known as Kretschmann and Otto geometries. In this paper, we investigate the behavior of a multilayered structure consisting of bilayer graphene under incident light using reflection coefficient calculations and wave dispersion equation solutions. Our results demonstrate that the number of plasmonic resonance positions in the reflection coefficient can vary depending on the structural parameters. This is attributed to the positioning of the dispersion curves of the hybrid modes in relation to the light line of the prism. For certain structural values, the dispersion curves may not be in the leaky range and do not cause a change in the reflection. This phenomenon opens up exciting possibilities for highly tunable optical device design. The findings of this study are not only relevant to the investigated configurations but also extend to the design of other optical devices such as waveguides, antennas, and multiplexers that utilize multilayered structures. Our results provide valuable insights for device designers, enabling them to precisely engineer multilayered structures by considering the importance and desirability of confined or leaky surface plasmon modes.

Keywords

Main Subjects


  1. Aghaee, T. and Orouji, A. A., "Reconfigurable multi-band, graphene-based THz absorber: circuit model approach", Results in Physics, 16, 102855, 2020. https://doi.org/10.1016/j.rinp.2019.102855.
  2. Akowuah, E. K., Gorman, T. and Haxha, S., "Design and optimization of a novel surface plasmon resonance biosensor based on Otto configuration", Optics express, 17(26), 23511-23521, 2009. https://doi.org/10.1364/OE.17.023511.
  3. Alaloul, M. and Khurgin, J. B.,"Electrical control of all-optical graphene switches", Optics express, 30(2), 1950-1966, 2022. https://doi.org/1364/OE.441710.
  4. Bludov, Y. V., Peres, N. M., & Vasilevskiy, M. I., "Unusual reflection of electromagnetic radiation from a stack of graphene layers at oblique incidence", Journal of Optics, 15(11), 114004, https://doi.org/10.1088/2040-8978/15/11/114004.
  5. Byrnes, S. J., "Multilayer optical calculations", arXiv preprint arXiv:1603.02720,
    https://doi.org/10.48550/arXiv.1603.02720.
  6. Chen, F., Yao, D., Zhang, H., Sun, L. and Yu, C., "Tunable plasmonic perfect absorber based on a multilayer graphene strip-grating structure", Journal of Electronic Materials, 48, 5603-5608, https://doi.org/10.1007/s11664-019-07422-0.
  7. Cheng, J., Fan, F. and Chang, S., "Recent progress on graphene-functionalized metasurfaces for tunable phase and polarization control", Nanomaterials, 9(3), 398, https://doi.org/10.3390/nano9030398.
  8. Cooper, D. R., D’Anjou, B., Ghattamaneni, N., Harack, B., Hilke, M., Horth, A., Majlis, N., Massicotte, M., Vandsburger, L., Whiteway, E. and Yu, V., "Experimental review of graphene", International Scholarly Research Notices, 2012(1), 501686, 2012. https://doi.org/5402/2012/501686.
  9. Esquius-Morote, M., Gómez-Dı, J. S. and Perruisseau-Carrier, J., "Sinusoidally modulated graphene leaky-wave antenna for electronic beamscanning at THz", IEEE Transactions on Terahertz Science and Technology, 4(1), 116-122, 2014. https://doi.org/1109/TTHZ.2013.2294538.
  10. Fuscaldo, W., Burghignoli, P., Baccarelli, P. and Galli, A., "A reconfigurable substrate–superstrate graphene-based leaky-wave THz antenna", IEEE Antennas and Wireless Propagation Letters, 15, 1545-1548, https://doi.org/10.1109/LAWP.2016.2550198.
  11. Gosling, J.H., Makarovsky, O., Wang, F., Cottam, N.D., Greenaway, M.T., Patanè, A., Wildman, R.D., Tuck, C.J., Turyanska, L. and Fromhold, T.M., "Universal mobility characteristics of graphene originating from charge scattering by ionised impurities", Communications Physics, 4(1), 30, 2021. https://doi.org/10.1038/s42005-021-00518-2.
  12. He, Z., Li, L., Ma, H., Pu, L., Xu, H., Yi, Z., Cao, X. and Cui, W., "Graphene-based metasurface sensing applications in terahertz band", Results in Physics, 21, 103795, https://doi.org/10.1016/j.rinp.2020.103795.
  13. Heydari, M.B., Karimipour, M. and Mohammadi Shirkolaei, M., "Analytical study of highly adjustable plasmonic modes in graphene-based heterostructure for THz applications", Journal of Optics, 52(4), 1912-1918, 2023. https://doi.org/10.1007/s12596-022-01084-8.
  14. Heydari, M.B. and Samiei, M.H.V., "TM-polarized Surface Plasmon Polaritons in Nonlinear Multi-layer Graphene-Based Waveguides: An Analytical Study", arXiv preprint arXiv:2101.02536, https://doi.org/10.1007/s11468-020-01336-y.
  15. Huang, J., Fu, T., Li, H., Shou, Z. and Gao, X., "A reconfigurable terahertz polarization converter based on metal–graphene hybrid metasurface", Chinese Optics Letters, 18(1), 013102, https://doi.org/10.1364/COL.18.013102.
  16. Katsidis, C.C. and Siapkas, D.I., "General transfer-matrix method for optical multilayer systems with coherent, partially coherent, and incoherent interference", Applied optics, 41(19), 3978-3987, 2020. https://doi.org/10.1364/AO.41.003978.
  17. Kazemi, F., "High Q-factor compact and reconfigurable THz aperture antenna based on graphene loads for detecting breast cancer cells", Superlattices and Microstructures, 153, 106865, 2021. https://doi.org/10.1016/j.spmi.2021.106865.
  18. Khoubafarin Doust, S., Siahpoush, V. and Asgari, A., "The tunability of surface plasmon polaritons in graphene waveguide structures", Plasmonics, 12, 1633-1639, https://doi.org/10.1007/s11468-016-0428-6.
  19. Kiani, N., Hamedani, F.T. and Rezaei, P., "Reconfigurable graphene-gold-based microstrip patch antenna: RHCP to LHCP", Micro and Nanostructures, 175, 207509, 2023. https://doi.org/10.1016/j.micrna.2023.207509.
  20. Li, G., Semenenko, V., Perebeinos, V. and Liu, P.Q., "Multilayer graphene terahertz plasmonic structures for enhanced frequency tuning range", Acs Photonics, 6(12), 3180-3185, 2019. https://doi.org/10.1021/acsphotonics.9b01597.
  21. Li, L., Liang, Y., Guang, J., Cui, W., Zhang, X., Masson, J.F. and Peng, W., "Dual Kretschmann and Otto configuration fiber surface plasmon resonance biosensor", Optics express, 25(22), 26950-26957, 2017. https://doi.org/10.1364/OE.25.026950.
  22. Lin, I.T., "Optical properties of graphene from the THz to the visible spectral region", University of California, Los Angeles ProQuest Dissertations & Theses,  2012. 1512053.
  23. Liu, J.T., Liu, N.H., Li, J., Jing Li, X. and Huang, J.H., "Enhanced absorption of graphene with one-dimensional photonic crystal", Applied Physics Letters, 101 ,(5), https://doi.org/10.1063/1.4740261.
  24. Lu, H., Zeng, C., Zhang, Q., Liu, X., Hossain, M.M., Reineck, P. and Gu, M., "Graphene-based active slow surface plasmon polaritons", Scientific reports, 5(1), 1-7 , 2015. https://doi.org/10.1038/srep08443.
  25. Mehdizadeh, F. and Khazaei Nezhad Gharahtekan, M., "Design of Simple Plasmonic Sensors based on Graphene Circles in THZ Region", Iranian Journal of Applied Physics, 13(4), 7-19, 2023. https://doi.org/22051/ijap.2023.43454.1319.
  26. Mohadesi, V., Asgari, A. and Siahpoush, V., "Radiation characteristics of leaky surface plasmon polaritons of graphene", Superlattices and Microstructures, 119, 40-45, 2018. https://doi.org/10.1016/j.spmi.2018.04.030.
  27. Mohadesi, V., Asgari, A., Siahpoush, V. and Taheri, S.S., "Analysis and optimization of graphene based reconfigurable electro-optical switches", Micro and Nanostructures, 165, 207193, 2022. https://doi.org/10.1016/j.micrna.2022.207193.
  28. Mohadesi, V., Siahpoush, V. and Asgari, A., "Investigation of leaky and bound modes of graphene surface plasmons", Journal of Applied Physics, 122(3), https://doi.org/10.1063/1.5006061.
  29. Moradi, A., "Damping properties of plasmonic waves on graphene", Physics of Plasmas, 24,(7), https://doi.org/10.1063/1.4993607.
  30. Moradi, A., "Canonical problems in the theory of plasmonics", Springer International Publishing, 230, 2020.
  31. Moradi, A., "Theory of electrostatic waves in hyperbolic metamaterials", Switzerland Springer, 2023.
  32. Nair, R.R., Blake, P., Grigorenko, A.N., Novoselov, K.S., Booth, T.J., Stauber, T., Peres, N.M. and Geim, A.K., "Fine structure constant defines visual transparency of graphene", science, 320(5881), 1308-1308, 2008. https://doi.org/10.1126/science.1156965.
  33. Castro Neto, A.H., Guinea, F., Peres, N.M., Novoselov, K.S. and Geim, A.K., "The electronic properties of graphene", Reviews of modern physics, 81(1), 109, https://doi.org/10.1103/RevModPhys.81.109.
  34. Ogawa, S., Fukushima, S. and Shimatani, M., "Graphene plasmonics in sensor applications: A review", Sensors, 20(12), 3563, 2020. https://doi.org/3390/s20123563.
  35. Rodrigo, D., Tittl, A., Limaj, O., Abajo, F.J.G.D., Pruneri, V. and Altug, H., "Double-layer graphene for enhanced tunable infrared plasmonics", Light: Science & Applications, 6(6), e16277-e16277, 2017. https://doi.org/10.1038/lsa.2016.277.
  36. Shibayama, J., Mitsutake, K., Yamauchi, J. and Nakano, H., "Kretschmann‐and Otto‐type surface plasmon resonance waveguide sensors in the terahertz regime", Microwave and Optical Technology Letters, 63(1), 103-106, 2021. https://doi.org/10.1002/mop.32581.
  37. Sui, G., Wu, J., Zhang, Y., Yin, C. and Gao, X., "Microcavity-integrated graphene waveguide: a reconfigurable electro-optical attenuator and switch", Scientific reports, 8(1), 12445, 2018. https://doi.org/10.1038/s41598-018-30396-8.
  38. Tiwari, S.K., Sahoo, S., Wang, N. and Huczko, A., "Graphene research and their outputs: Status and prospect", Journal of Science: Advanced Materials and Devices, 5(1), 10-29, https://doi.org/10.1016/j.jsamd.2020.01.006.
  39. Wang, F., Zhang, Y., Tian, C., Girit, C., Zettl, A., Crommie, M. and Shen, Y.R., "Gate-variable optical transitions in graphene", science, 320(5873), 206-209, 2008. https://doi.org/ 10.1126/science.1152793.
  40. Wu, D., Wang, M., Feng, H., Xu, Z., Liu, Y., Xia, F., Zhang, K., Kong, W., Dong, L. and Yun, M., "Independently tunable perfect absorber based on the plasmonic properties in double-layer graphene", Carbon, 155, 618-623, 2019. https://doi.org/ 10.1016/j.carbon.2019.09.024.
  41. Xu, J., Qin, Z., Chen, M., Cheng, Y., Liu, H., Xu, R., Teng, C., Deng, S., Deng, H., Yang, H. and Qu, S., "Broadband tunable perfect absorber with high absorptivity based on double layer graphene", Optical Materials Express, 11(10), 3398-3410, 2021. https://doi.org/10.1364/OME.439348.
  42. Yadav, R., Verma, A. and Raghava, N.S., "A dual-band graphene-based Yagi-Uda antenna with evaluation of transverse magnetic mode for THz applications", Superlattices and Microstructures, 154, 106881, 2021. https://doi.org/10.1016/j.spmi.2021.106881.
  43. Zhang, Z., Lee, Y., Haque, M.F., Leem, J., Hsieh, E.Y. and Nam, S., "Plasmonic sensors based on graphene and graphene hybrid materials", Nano Convergence, 9(1), 28, https://doi.org/10.1186/s40580-022-00319-5.
  44. Zhen, Z. and Zhu, H., "Structure and properties of graphene", Graphene (pp. 1-12): Elsevier, 2018. https://doi.org/10.1016/B978-0-12-812651-6.00001-X.

Articles in Press, Accepted Manuscript
Available Online from 22 September 2024
  • Receive Date: 13 May 2024
  • Revise Date: 26 August 2024
  • Accept Date: 12 September 2024