Investigation of ion-acoustic compressive and rarefactive solitons in multicomponent plasma with negative ions

Document Type : Research Paper

Author

Abstract

Propagation of ion-acoustic compressive (positive) and rarefactive (negative) solitons in a multicomponent plasma system consisting of positive and negative ions and electrons have been investigated. The Korteweg-de Vries (KdV) equation for a multicomponent plasma system has been considered. Then the Adomian decomposition method (ADM) has been applied to solve KdV equation and to obtain its soliton solution. Furthermore, the effect of parameters such as negative ion density (r) and velocity (ν) on the considered soliton is studied. Our obtained results show that in the fast mode of ion-acoustic soliton, there is a critical value of negative ions (r_c) below which the compressive solitons can exist and for value above that, the rarefactive solitons can be present. Both solitons will be defined through the KdV equation. Consequently, as density is a constant, the amplitude of the positive and negative solitons increases with an increase in velocity and the width of them decreases.

Keywords


1. E. Infeld and G. Roland, Nonlinear Waves, Soliton and Chaos (Cambridge University Press, Cambridge, England, 1990). 2. R. C. Davidson, Method of Nonlinear Plasma Theory (Academic, New York, 1972).
3. P. G. Drazin and R. S. Johnson, Soliton: An Introduction (Cambridge University Press, Cambridge, 1989).
4. S. K. Sharma, K. Devi, N. C. Adhikary and H. Bailung, Phys. Plasmas 15, 082111 (2008).
5. H. Washimi and T. Taniuti, Phys. Rev. Lett. 17, 996 (1966).
6. H. Ikezi, R. J. Taylor and D. R. Baker, Phys. Rev. Lett. 25, 11 (1970).
7. Y. Nakamura, Phys. Plasma. Control. Fusion 41 (1999).
8. F. Araghi and D. Dorranian, J. Theor. Appl. Phys. 7, 41 (2013).
9. S. AliShan, N. Akhtar and S. Ali, Astrophys. Space Sci. 351, 181–190 (2014).
10. A. Kumar and V. Mathew, Physics of Plasmas 24, 092107 (2017).
11. B. Roy, S. Mukherjee, International Journal of Nonlinear Science 23, 67-74 (2017).
12. Yu. V. Medvedev, Plasma Physics Reports 43, 37-43 (2017).
13. H. Bailung, S. K. Sharma and Y. Nakamura, Phys. Plasmas 17, 062103 (2010).
14. S. Hussain, N. Akhtar and S. Mahmood, Astrophysics and Space Science 338(2),(2011).
15. M. K. Mishra and R. S. Chhabra, Phys. Plasmas 3, (1996).
16. M. A. Allen, S. Phibanchon and G. Rowlands, J. Phys. Plasmas, Vol. 73, Part 2, PP. 215-229, (2007).
17. B. C. Kalita and N. Devi, Physics of Fluids B 5, 440 (1993).
18. O. H. El-Kalaawy, Phys. Plasmas 18, 112302 (2011).
19. S. Watanabe, J. Phys. Soc. Jpn. 53, 952 (1984).
20. S. G. Tagare, J. Phys. Plasmas 36, 301 (1986).
21. Y. Nakamura and I. Tsukabayashi, Phys. Rev. Lett. 52, 2356 (1984).
22. Y. Nakamura and I. Tsukabayashi, J. Phys. Plasma 34, 401 (1985).
23. G. C. Das, Phys. Plasma 21, 257 (1979).
24. Y. Nakamura, Nonlinear and Environmental Electromagnetics, edited by H. Kikuchi (Elsevier, Amsterdam, 1985), P. 139.
25. G. Adomian, Solving Frontier Problems of Physics: The Decomposition Method (Kluwer, Boston, 1994).
26. A. M. Wazwaz, "Partial Differential Equation and Solitary Wave Theory Nonlinear Physical Science", Springer (2010).
27. S. S. Nourazar, A. Nazari-Golshan, A. Yildirim, and M. Nourazar, Z.
Naturforsch. A 67, 355 (2012).
28. A. Nazari-golshan, S. S. Nourazar, P. Parvin, and H. Ghafoori-Fard, Astrophys.
Space Sci. 349, 205–214 (2014).
29. A. Nazari-golshan, Phys. Plasmas 23, 082109 (2016).
30. S. S. Nourazar, M. Soori, and A. Nazari-Golshan, Aus. J. Basic Appl. Sci. 5(8),
1400–1411 (2011).
31. A. Nazari-Golshan, S. S. Nourazar, H. Ghafoori-Fard, A. Yildirim, and A.
Campo, Appl. Math. Lett. 26, 1018 (2013).
32. S. S. Nourazar and A. Nazari-Golshan, Indian J. Phys. 89(1), 61–71 (2015).
33. J. H. He, Commun. Nonlinear Sci. Numer. Simul. 2, 230 (1997).