Research Paper: Solution of the Dirac Equation for Pseudo-Hermitian Hamiltonian and Energy-levels Crossing

Document Type : Research Paper

Authors

1 Assistant Professor, Department of Physics, Faculty of Basic Sciences, Shahed University, Tehran, Iran

2 Master Student, Department of Physics, Faculty of Basic Sciences, Shahed University, Tehran, Iran

Abstract

In this paper, the relativistic Dirac equation in one dimension is investigated for a particle in an external electromagnetic field, with the property of position-dependent effective mass approximation (PDEM), in the absence of vector potential. By removing the lower spinor component and combining the pair of equations, a Schrödinger-like equation is obtained for the upper spinor component. Using canonical transformations and introducing two first-order Hermitian and anti-Hermitian differential operators, a formalism for pseudo-hermitic Hamiltonians with parity-time reversal symmetry (PT) has been obtained. Comparing the equation derived from pseudo-Hermitian Hamiltonian with the non-relativistic Schrödinger equation leads to a general formalism for one-dimensional solvable imaginary non-Hermitian potentials with real energy spectra. Also, using this process, the complex potentials of Pöschl-Teller and Scarf II with real energy spectra in Dirac equation with PDEM approximationand PT symmetry have been investigated and their application has been expressed. For some particular parameters we will see the phenomenon of energy-levels crossing. In fact, it means that energy levels disappear from the spectrum. Also, for the mentioned examples, potential figures are drawn.

Keywords

Main Subjects


[1] Bender, C. M., Boettcher, S., and Meisinger, P. N. PT-Symmetric Quantum Mechanics, J. Math. Phys. 40, 2201, (1999).
[2] Mustafa, O. Dirac and Klein–Gordon Particles in Complex Coulombic Fields: a Similarity Transformation, J. Phys. A: Math. Gen. 36, 5067, (2003).
[3] Sinha, A., Roy, P. Generation of Exactly Solvable Non-Hermitian Potentials with Real Energies, Czech. J. Phys. 54, 129-138, (2004).
[4] Mustafa, O., and Mazharimousavi, S. H. Non-Hermitian d-dimensional Hamiltonians with position-dependent mass and their η-pseudo-Hermiticity generators, Czech. J. Phys. 56, 967-975, (2006).
[5] Quesne, C. First-order intertwining operators and position-dependent mass Schrödinger equations in d dimensions, Ann. Phys. 321, 1221-1239, (2006).
[6] Tanak, T. N-fold supersymmetry in quantum systems with position-dependent mass, J. Phys. A: Math. Gen. 39, 219, (2006).
[7] Mustafa, O., and Mazharimousavi, S. H. Quantum particles trapped in a position-dependent mass barrier; a d-dimensional recipe, Phys. Lett. A. 358, 259-261, (2006).
[8] Bender, C. M., Jones, H. F., and Rivers, R. J.  Dual PT-symmetric quantum field theories, Phys. Lett. B. 625, 333-340, (2005).
[9] Alhaidari, A. D. Relativistic extension of the complex scaling method, Phys. Rev. A. 75, 042707, (2007).
[10] Panella, O., Biondini, S., and Arda, A. New exact solution of the one dimensional Dirac Equation for the Woods-Saxon potential within the effective mass case, J. Phys. A. 43, 325302, (2010).
[11] Baye, D., Levai, G., and Sparenberg. J. M. Phase-equivalent complex potentials, Nucl. Phys. A. 599, 435-456, (1996).
[12] Ruschhaupt, A., Delgado, F., and Muga, J. G. Physical realization of PT-symmetric potential scattering in a planar slab waveguide, J. Phys. A: Math. Gen. 38, L171, (2005).
[13] Cannata, F., Junker, G., and Trost, J. Schrödinger operators with complex potential but real spectrum, Phys. Lett. A. 246, 219-226, (1998).
[14] Khare, A., and Mandal, B. P. A PT-invariant potential with complex QES eigenvalues, Phys. Lett. A. 272, 53-56, (2000).
[15] Ahmed, Z., Pseudo-Hermiticity of Hamiltonians under imaginary shift of the coordinate: real spectrum of complex potentials, Phys. Lett. A. 290, 19-22, (2001).
[16] Jia, C. S., and de Souza Dutra, A. Position-dependent effective mass Dirac equations with PT-symmetric and non-PT-symmetric potentials, J. Phys. A: Math. Gen. 39, 11877, (2006).
[17] Ahmed, Z, Energy band structure due to a complex, periodic, PT-invariant potential, Phys. Lett. A. 286, 231-235, (2001).
[18] Panahi, H., and Bakhshi, Z. Solvable potentials with position-dependent effective mass and constant mass Schrödinger equation, Acta. Physica. Polonica. B. 41, 11, (2010).
[19] Jost, J. Riemannian geometry and Geometric Analysis, Springer, (2002).
[20] Bjorken, J. D., and Drell. S. D.  Relativistic Quantum Mechanics, McGraw-Hill, (1964).
[21] Itzykson, C., and Zuber, J. B. Quantum Field Theory, McGraw-Hill, (1980).
[22] Li, H., and Kusnezov, D. Group Theory Approach to Band Structure: Scarf and Lamé Hamiltonians, Phys. Rev. Lett. 83, 1283, (1999).
[23] Alhassid, Y., Gursey, F., and Iachello, F. Group theory approach to scattering. II. The euclidean connection, Ann. Phys. NY. 167, 181, (1986).
[24] Sukumar, C. V.  Potentials generated by SU (1, 1), J. Phys. A: Math. Gen. 19, 2229, (1986).
[25] Zarrinkamar, S., Rajabi, A. A., and Hassanabadi. H. Supersymmetric study of the pseudospin symmetry limit of the Dirac equation for a pseudo harmonic potential, Physica Scripta. 83, 015009, (2011).
[26] Haouat, S., and Chetouani, L. The (1+1) dimensional Dirac equation with pseudo scalar potentials: path integral treatment, International Journal of Theoretical Physics. 46, 1528-1541, (2007).
[27] Bagchi, B., and Quesne, C. Pseudo-Hermiticity, weak pseudo-Hermiticity and η-orthogonality condition, Phys. Lett. A. 301, 173-176, (2002).
[28] Wei, G. F., and Gong, S. H, A novel algebraic approach to spin symmetry for Dirac equation with scalar and vector second Pöschl-Teller potentials, The European Physical Journal A. 43, 185-190, (2010).
[29] Ikot, A. N., Maghsoodi, E., Zarrinkamar, S., Ibang, E., and Hassanabadi. H. Solutions of Dirac equation in the presence of modified Tietz and modified Pöschl-Teller potentials plus a Coulomb-Like Tensor interaction using SUSYQM, Few-Body systems 54, 2053-a2065, (2013).
[30] Kretschmer, R., and Szymanowski, L. The Hilbert-Space Structure of Non-Hermitian Theories with Real Spectra, Czech. J. Phys. 54, 71-75, (2004).
[31] Mustafa, O., and Znojil, M. PT-symmetric pseudo-perturbation recipe: an imaginary cubic oscillator with spikes, J. Phys. A: Math. Gen. 35, 8929, (2002).
[32] Samsonov, B. F., and Shamshutdinova, V. V. Quadratic pseudosupersymmetry in two-level systems, J. Phys. A: Math. Gen 38, 4715, (2005).
[33] Alhaidari, A. D.  Relativistic extension of shape-invariant potentials, J. Phys. A: Math. Gen. 35, 6207, (2002).
[34] Mustafa, O., and Mazharimousavi, S. H. First-Order Intertwining Operators with Position Dependent Mass and η-Weak-Pseudo-Hermiticity Generators, International Journal of Theoretical Physics 47, 446-454, (2008).
[35] Mostafazadeh, A., Pseudo-Hermiticity versus PT symmetry: The necessary condition for the reality of the spectrum of a non-Hermitian Hamiltonian, J. Math. Phys. 43 , 205, (2002).
[36] Mostafazadeh, A. Pseudo-supersymmetric quantum mechanics and isospectral pseudo-Hermitian Hamiltonians, Nucl. Phys. B. 640, 419-434, (2002).
[37] Mostafazadeh, A. Pseudo-Hermitian description of PT-symmetric systems defined on a complex contour, J. Phys. A: Math. Gen. 38, 3213, (2005).
[38]Alvarez-Castillo, D. E., and Kirchbach, M. Exact spectrum and wave functions of the hyperbolic Scarf potential in terms of finite Romanovski polynomials, Revista mexicana de física E 53, 143-154, (2007).
[39] Antoine, J-P., Gazeau, J-P., Monceau, P., Klauder, J. R., and Penson. K. A. Temporally stable coherent states for infinite well and Pöschl-Teller potentials, Journal of Mathematical Physics, 42, 2349, (2001).
[40] Hayrapetyan, D. B., Kazaryan, E. M., and Tevosyan, H. KH. Optical properties of spherical quantum dot with modified Pöschl-Teller potential, super lattices and Microstructures, 64, 204-212, (2013).
[41] Levai, G., Baran, A., Salamon, P., and Vertse, T. Analytical solutions for the radial Scarf II potential, Physics Letters A. 381, 1936L, (2017).
[42] Pratiwi, B. N., Suparmi, A., Cari, C., and Husein, A. S Asymptotic iteration method for the modified Pöschl-Teller potential and trigonometric Scarf II non-central potential in the Dirac equation spin symmetry, Pramana-J. Phys. 88, 1-9, (2017).