تاثیر ضخامت و آلایش- F در بهینه‌سازی خواص الکتریکی و اپتیکی لایه‌های نازک رسانای شفاف FTO(SnO2:F)

نویسندگان

دانشگاه الزهرا

چکیده

  در این پژوهش لایه‌های نازک رسانا و شفاف FTO را به روش اسپری بر روی زیرلایه‌های شیشه لایه نشانی کرده‌ایم. تاثیر حجم محلول (ضخامت لایه‌ها) و نسبت آلایش F را بر خواص الکتریکی و اپتیکی لایه‌ها مورد بررسی قرار گرفت. مورفولوژی نانوساختارها و نحوه رشد آنها را توسط تصاویر SEM مورد تجزیه و تحلیل قرار گرفت. طیف عبور اپتیکی توسط دستگاه طیف‌سنج Optics Ocean و مقاومت سطحی لایه‌ها بر حسب حجم محلول (ضخامت لایه) و نسبت آلایش F ، توسط دستگاه چهار میله‌ای مورد بررسی قرار گرفت. بهترین لایه شفاف رسانا از نظر ضخامت که دارای بالاترین ضریب عبور و کمترین مقاومت سطحی است برای اثر ضخامت، نمونه با ضخامت لایه 830 nm با مقاومت ویژه. cm Ω 0.26×10 -3 و ضریب عبور اپتیکی 60 % در محدوده طیف مرئی و از نظر الایش F ، نمونه با آلایش 1.2 HF با مقاومت ویژه 1.19×10-3 (Ω. cm) و عبور %86 بدست آمد. هدف ما از این پژوهش رسیدن به یک حالت بهینه و بر حسب شرایط آزمایشگاهی خود، از رسانندگی و عبور اپتیکی بالا که نتایج بدست آمده در مقایسه با نتایج دیگران قابل توجه می‌باشد.

کلیدواژه‌ها


عنوان مقاله [English]

Effect of thickness and diffusion-F on optimization of electrical and optical properties of thin conductive transparent layer FTO (SnO2: F)

نویسندگان [English]

  • Azam Soltanabadi
  • Abdollah Mortezaali
چکیده [English]

In this research, FTO conductive and transparent thin layers were deposited
on glass substrates by using spray technique. Effect of solution volume
(layers thicknesses) and fluorine doping on layers electrical and optical
properties is studied. Their nanostructures morphology and growth
mechanism are investigated by SEM images. Optical transmission spectrum
is obtained by Optics Ocean spectrometer and surface resistance of layers
are measured by Four Probe method .The optimum conductive transparent
layer which has maximum transmission coefficient and minimum Resistivity
in film Thickness effect for 830 nm Thickness with 0.26×10 -3 Ω.cm surface
resistance and 60% optical transmission in visible range and in doping
effect for sample with 1.2 HF concentration with 1.19×10 -3 Ω.cm Resistivity
and %84 optical transmission have been measured. The obtained results for
surface resistance are noticeable with others results.

کلیدواژه‌ها [English]

  • Transparent Conductive Oxides
  • Spray Method
  • Electrical Resistance and Optical Transfer Coefficient
[1]  B. Thangaraju; Thin Solid Films 402 (2002) 71.
[2]  P.S. Patil; Mater. Chem. Phys. 59 (1999) 185.
[3]  A.L. Dawar and J.C. Joshi; J. Mater. Sci. 19 (1984) 1.
[4]    F.L. Rashid, M.A. Eleiwi، and H.A. Hoshi; International Journal of Innovative Research in Engineering & Science 6, No. 2 (2013) 66.
[5]  B. Gottlieb, R. Koropecki, R. Arce, R. Crisalle، and J. Ferron; Thin Solid Films 199 (1991) 13 .
[6]     S.S. Roy and J. Podder; International Conference on Mechanical Engineering (ICME2009) 26- 28 December 2009, Dhaka, Bangladesh .
[7]    A.E. Rakhshani, Y. Makdisi, and H.A. Ramzaniyan; “Electronic and optical properties of fluorine-doped tin oxide films”; J. Appl. Phys. 83, No. 2(1998) 1049-1057.
[8]  P. Montmeat; “Thin film membranes for the improvement of gas sensor selectivity” École Nationale Supérieure des Mines de Saint-Étienne (ENSMSE): Graduate School for Science and Technology، France, 1999.
[9]   R.E. Presley, C.L. Munsee, C.H. Park, D. Hong, J.F. Wager, and D.A. Keszler; “Tin oxide transparent thin-film transistors” J. Phys. D: Appl. Phys. 37 (2014) 2810-2813.
[10]   E. Elangovan and K. Ramamurthi; “Optoelectronic properties of spray deposited SnO2: F thin films for window materials in solar cells”; Journal of Optoelectronics and Advanced Materials 5, No. 1 (2003) 45−54.
[11]   K.H. Kim, N.M. Park, T.Y. Kim, K.S. Cho, J.I. Lee, H.Y. Chu and G. Y. Sung; “Indium Tin Oxide Thin Films Grown on Polyethersulphone (PES) Substrates by Pulsed-Laser Deposition for Use in Organic Light-Emitting Diodes”; Proc. SPIE 5740، Projection Displays XI (2005) 145.
[12]  S.J. Ikhmayies; “Production and characterization of CdS/CdTe thin film photovoltaic solar cells of potential industrial use”; Amman, University of Jordan, 2002.
[13]   W. H. Bloss and W. H. Schock CHOCK; “CdS-CuxS thin film solar cells. In: Photovoltaic and photoelectrochemical solar energy conversion”; New York and London, Nato Advanced Study Institute Series, Plenum Press (1980) 117−156.
[14]    V. Geraldo, S.L.V. de Andrade, E.A. de Morals, C.V. Santilli, S.H. Pulcinelli; “Sb doping effect and oxygen adsorption in SnO2 thin films deposited via sol-gel”; Mat. Res. 6, No. 4 (2003) 451−456.
[15]  A. Banerjee, N.R. Maity, S. Kundoo, and K.K. Chattopadhyay; “Poole– Frenkel effect in nanocrystalline SnO2:F thin films prepared by a sol–gel dip-coating technique”; Phys. Stat. Sol. A 201, No. 5 (2004) 983−989.
[16]   R. Asomoza, A. Maldonado, J. Rickards, E.P. Zironi, M.H. Farias, L. Cota-Araiza، and G. Soto; “Nuclear reactions as a probe of fluorine content in SnO2: F thin films”; Thin Solid Films 203 (1991) 195.
[17]   J. Sundqvist and A. Harsta; “Growth of SnO2 thin films by ALD and CVD: A comparative study”; Proceedings of the Sixteenth Int. CVD Conf. Paris, France (2003) 511.
[18]    S.S. Pan, C. Ye, X.M. Teng, H.T. Fan, G.H. Li; “Preparation and characterization of nitrogen-incorporated SnO2 Films”; Appl. Phys. A 85, No. 1 (2006) 21−24.
[19]     S.J. Ikhmayies and R.N. Ahmad-Bitar; “Effect of the substrate temperature on the electrical and structural properties of spray-deposited SnO2: F thin films”; Materials Science in Semiconductor Processing 12 (2009) 122−125.
[20]  G. Gordillo, L.C. Moreno, W. de la Cruz، and P. Teheran; “Preparation and characterization of SnO2 thin films deposited by spray pyrolysis from SnCl2 and SnCl4 precursors”; Thin Solid Films 252 (1994) 61−66.
[21]  M.A. Sánchez-García, A. Maldonado, L. Castañeda, R. Silva-González, and M. de la Luz Olvera; “ Characteristics of SnO2: F Thin Films Deposited by Ultrasonic Spray Pyrolysis: Effect of Water Content in Solution and Substrate Temperature”; Materials Sciences and Applications 3 (2012) 690- 696.
[22]  S.J. Ikhmayies and R.N. Ahmad-Bitar; “Using HF rather than NH4F as doping source for spray-deposited SnO2:F thin films”; J. Cent. South Univ. 19 (2012) 791−796.
[23]    D. Zaouk, R. al Asmar, J. Podlecki، Y. Zaatar, A. Khoury, and A. Foucaran; “X-ray diffraction studies of electrostatic sprayed SnO2:F films”; Microelectronics Journal 38 (2007) 884–887.
[24]        R.E.I. Scropp, C.E. Matovich, P.K. Bhat, and A.K. Madan، 20th Photoe. Spec. Conf., Inst. Elec. Electron. Eng., New York (1988) 273.
[25]  C. Hudaya, Ji H. Park, and J. K. Lee; “Effects of process parameters on sheet resistance uniformity of fluorine-doped tin oxide thin films”; Nanoscale Research Letters 7 (2012) 17.
[26]  A.A. Yadav, E. U. Masumdar, A.V. Moholkar, K.Y. Rajpure, and C.H. Bhosale; “Effect of quantity of spraying solution on the properties of spray deposited fluorine doped tin oxide thin films”; Physica B 404 (2009) 1874– 1877.
[27]  R. Ellingson and M. Heben; “Absorption coefficients of semiconductor thin films”; The University of Toledo (2013) .
[28]    P.S. Shewale, S.I. Patil, and M.D. Uplane; “Preparation of fluorine- doped tin oxide films at low substrate temperature by an advanced spray pyrolysis technique, and their characterization”; Semicond. Sci. Technol. 25 (2010) 115008.
[29]    E. Elangovan and K. Ramamurthi; “Studies on micro-structural and electrical properties of spray-deposited fluorine-doped tin oxide thin films from low-cost precursor”; Thin Solid Films 476 (2005) 231–236.
[30]   A.V. Moholkar, S.M. Pawar, K.Y. Rajpure, C.H. Bhosale، J.H. Kim; “Effect of fluorine doping on highly transparent conductive spray deposited nanocrystalline tin oxide thin films”; Applied Surface Science 255 (2009) 9358–9364.
[31]    C. Agashe, J. Hu¨pkes, G. Scho¨pe, and M. Berginski; “Physical properties of highly oriented spray-deposited fluorine-doped tin dioxide films as transparent conductor”; Solar Energy Materials & Solar Cells 93 (2009) 1256–1262.