شبیه‌سازی ذرّه‌ای امواجِ یون صوتِ خطّی در پلاسما‌

نویسندگان

دانشگاه الزهرا

چکیده

هر حرکتِ متناوبِ یک سیّال را می‌توان به وسیلۀ تحلیلِ فوریه به بر هم نهی از نوسانات با فرکانس‌ها و عدد موج‌های مختلفِ ω و κ تجزیه کرد. لذا انرژی یک موج برابر است با مجموعِ انرژی مؤلّفه‌های فوریه و با مربّعِ این ضرایب متناسب می‌باشد. عددِ موج و فرکانسِ مربوط به انرژی ماکزیمم همان عددِ موج و فرکانسِ مُدِ اصلی سیستم می‌باشند که در رابطۀ پاشندگی صدق می‌کنند. در این مقاله رابطۀ پاشندگی موجِ یون صوت در پلاسما با استفاده از کُدِ شبیه‌سازی ذرّه‌ای که توسط نویسندگان  این مقاله نوشته شده مورد مطالعه قرار گرفته است.

کلیدواژه‌ها


عنوان مقاله [English]

Particle simulation of linear sound ions in plasma

نویسندگان [English]

  • Mahmoudreza Rohani
  • Amene Kargariyan
چکیده [English]

Any periodic motion of a fluid can be decomposed by Fourier analysis into a
superposition of sinusoidal oscillation with different frequencies 􀈦 and
wavenumbers 􀈛. Therefore energy of a wave is equivalent to total energy of
Fourier components and is proportional to the square of these coefficients.
The wave number and frequency of maximum energy is the same as that of
main mode of system which is satisfied in dispersion relation. In this paper
the dispersion relation of ion acoustic wave has been studied by using a
particle simulation code which is written by authors.

کلیدواژه‌ها [English]

  • Dispersion relation
  • Particle in cell method
  • Ion acoustic waves
[1]        F. Valentini, T.M. O’Neil, O.H.E. Dubin; “Decay initability of electron-acoustic waves”; Comunications in Nonlinear Science and Numerical Simulation 13 (2008) 215.

[2]        S. Sultana, G. Sari, and I. Kourakis; “Modelling of ion-acoustic shocks in superthermal plasmas”; Proceedings of the 30th International Conference on Phenomena in Ionized Gases (ICPIG), Belfast (2011) p. A4-425.

[3]        R.D. Sydora, F. Detering, W. Rozmus, Y. Yu. Bychenkov, A. Brantov, and C.E. Capjack; “Collisional particle simulation of ion acoustic instability”; Journal of Plasma Physics 72 (2006) 1295-1298.

[4]        K. Patel; “Observation of ion waves in two dimesional particle simulation of field-assisted plasma expansion”; Journal of Applyed Physics 81 (1997) 6622.

[5]        P. Hllenger, P. Tranicek, and J. Douglas Menietti; “Effective collision frequency due to ion-acoustic instability: Theory and simulations”; Geophysical Research Letters 31 (2004) L10806.

[6]        F.F. Chen; “Introduction to Nonlinear Fluid-Plasma Waves”; Kluwer Academic Publishers (1988).

[7]        D.E. Potter, “Computational Physics”; Wiley-intersience Publica-tion (1973).

[8]        C.K. Birdsall and A.B. Langdon; “Plasma Physics Via Computer Simulation”; Institute of Physics Publishing (1995).

[9]        D.K. Callebaut and G.K. Karvgila; “Nonlinear Fourier Analysis for Unmagnetized Plasma Waves”, Phys. Scr. 68, No. 1 (2003) 7-21.