مقالۀ پژوهشی: تفاوت رفتار تشدیدهای چندفوتونی به‌ازای مضارب فرد و زوج انرژی فوتون‌ میدان‌های محرک قوی در سامانه‌های کوانتمی پنج‌ترازی

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دبیر آموزش و پرورش ممسنی، سازمان آموزش و پرورش استان فارس، فارس، ایران؛ دانشجوی دکترا، گروه فیزیک، دانشکدۀ علوم، دانشگاه یاسوج، یاسوج، ایران

2 استادیار، گروه فیزیک، دانشکدۀ علوم، دانشگاه یاسوج، یاسوج، ایران

چکیده

در این تحقیق، ساختار ترازی نقاط کوانتمی دوگانۀ دوالکترونی، برحسب محل­ تقاطع ترازهای انرژی یک سامانۀ پنج­ترازی مدل شده است. این کار انجام شده است تا علل رویداد تشدیدهای چندفوتونی و تفاوت رفتار آن‌ها را به­ازای مضارب فرد و زوج انرژی فوتون در مجاورت گذارهای بار بین ­نقطه­ای که نمایانگر وابستگی نامیزانی جریان به این عدم تقارن است، توضیح دهیم. ابتدا با استفاده از تقریب­های قوی‌میدان و غیر بی­درو، فاز تداخل و آهنگ­های گذار تا مرتبۀ چهارم برای نامیزانی­های صفر و دلخواه محاسبه شدند. سپس با شبیه­سازی­ عددی و تحلیل آن، جریان در وضعیت سدشدگی اسپینی محاسبه شد، که با جریان اندازه‌گیری‌شده در آزمایش‌ها بر روی نقاط کوانتمی دوگانۀ GaAs وInAs ، سازگاری کامل دارد. در پایان نشان داده شد که نتایج حاصل از این مدل، شامل همۀ خصوصیات مهم و بارز داده­های موجود در مشاهدات تجربی است و این تفاوت رفتاری تشدیدها به­ازای مضارب صحیح بسامد، مختص سامانه­های چندترازی در معرض میدان‌های کاربردی بزرگ‌دامنه است. این مطالعه با انواع سامانه­های چندترازی مقیاس نانو و میکرو، حالت­ جامد و اتمی یا ملکولی ارتباط تنگاتنگی دارد.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Research Paper: Difference in Behavior of Multiphoton Resonances for Odd and Even Multiples of the Strong Driving Fields Photon Energy in Five-level Quantum Systems

نویسندگان [English]

  • Mostafa Karami 1
  • Parsa Zamani 2
1 Teacher of Mamasani Education Department, Ministry of Education of Fars, Fars, Iran; PhD Student, Department of Physics, Faculty of Science, Yasouj University, Yasouj,
2 Assistant Professor, Department of Physics, Faculty of Science, Yasouj University, Yasouj, Iran
چکیده [English]

In this research, level structure of two-electron double quantum dots in terms of energy levels crossings a five-level system is modeled. This work is done for explaining reasons of happening multiphoton resonances and their different behavior for the odd and evenmultiples of photon energynear interdot charge transitions that shows the current detuning dependence on this asymmetry. First, interference phase and transition rates up to fourth order for zero and arbitrary detunings were calculated making use of non-adiabatic and strong-field approximations. Second, by numerical simulation and its analysis, the steady-state current is calculated in spin-blockaded situation that it perfectly agrees with the measured current in experiments done on InAs and GaAs double quantum dots. At last, it was shown that the obtained results in this model contain all main features of the experimental data and this behavioral difference of resonances for the frequency integer multiples is specific to multilevel systems in the presence of the large-amplitude applied fields. This study is closely related to the nano and micro scales, solid state and atomic or molecular systems.

کلیدواژه‌ها [English]

  • Multilevel Quantum Interferences
  • Multiphoton Resonances
  • Odd-even Multiple Effect
  • Two-electron Regime
  • Background Current
[1] Manakov N. L., Ovsiannikov V. D., Rapoport L. P., “Atoms in a laser field”, Phys. Rep. 141, 320-433 (1986).
[2] Faisal F. H. M., “Theory of Multiphoton Processes”, (Plenum, New York, 1987).
[3] Fainshtein A. G., Manakov N.L., Ovsiannikov V.D., Rapoport L.P., “Nonlinear susceptibilities and light scattering on free atoms”, Phys. Rep. 210, 111-221 (1992).
[4] Kleber M., “Exact solutions for time-dependent phenomena in quantum mechanics”, Phys. Rep. 236, 331-393 (1994).
[5] Oliver W. D., Yu Y., Lee J. C., Berggren K. K., Levitov L. S., and Orlando T. P., “Mach-Zehnder interferometry in a strongly driven superconducting qubit”, Science 310, 1653-1657 (2005).
[6] Ashhab S., Johansson J. R., Zagoskin A. M., and Nori F., “Two-level systems driven by large-amplitude fields”, Phys. Rev.A 75 (2007) 063414.
[7] Shevchenko S. N., Ashhab S., and Nori F., “Landau-Zener- Stückelberg interferometry”, Phys. Rep. 492, 1-30  (2010).
[8] Ribeiro H., Petta J. R., and Burkard G., “Interplay of charge and spin coherence in Landau-Zener-Stückelberg-Majorana interferometry”, Phys. Rev.B 87 (2013) 235318.
[9] Zhou J., Huang P., Zhang Q., Wang Z., Tan T., Xu X., Shi F., Rong X., Ashhab S., and Du J., “Observation of time-domain Rabi oscillations in the Landau-Zener regime with a single electronic spin”, Phys. Rev. Lett 112 (2014) 010503.
[10] Scully M. O. and Zubairy M. S., “Quantum Optics”, (Cambridge University Press, Cambridge, England, 1997).
[11] Sun G., Wen X., Mao B., Chen J., Yu Y., Wu P., and Han S., “Tunable quantum beam splitters for coherent manipulation of a solid-state tripartite qubit system”, Nat. Commun 1 (2010) 51.
[12] Sun G., Wen X., Wang Y., Cong S., Chen J., Kang L., Xu W., Yu Y., Han S., and Wu P., “Population inversion induced by Landau-Zener transition in a strongly driven rf-SQUID”, Appl. Phys. Lett 94 (2009) 102502.
[13] de Graaf S. E., Leppakangas J. J., Adamyan A., Danilov A. V., Lindstrom T., Fogelstrom M., Bauch T., Johansson G., and Kubatkin S. E., “Charge qubit coupled to an intense microwave electromagnetic field in a superconducting Nb device: evidence for photon-assisted quasiparticle tunneling”, Phys. Rev. Lett 111 (2013) 137002.
[14] Colless J. I., Croot X. G., Stace T. M., Doherty A. C., Barrett S. D., Lu H., Gossard A. C., and Reilly D. J., “Raman phonon emission in a driven double quantum dot”, Nat. Commun 5 (2014) 3716.
[15] Grajcar M., Ploeg S. H. W. V. D., Izmalkov A., Il’ichev E., Meyer H. G., Fedorov A., Shnirman A., and Schon G., “Sisyphus cooling and amplification by a superconducting qubit”, Nature Physics 4, 612-616 (2008).
[16] Valenzuela S. O., Oliver W. D., Berns D. M., Berggren K. K., Levitov L. S., and Orlando T. P., “Microwave-induced cooling of a superconducting qubit”, Science 314, 1589-1592 (2006).
[17] Satanin A. M., Denisenko M. V., Ashhab S., and Nori F., “Amplitude spectroscopy of two coupled qubits”, Phys. Rev. B 85 (2012) 184524.
[18] Berns D. M., Rudner M. S., Valenzuela S. O., Berggren K. K., Oliver W. D., Levitov L. S., and Orlando T. P., “Amplitude spectroscopy of a solid-state artificial atom”, Nature (London) 455, 51-57 (2008).
[19] Stehlik J., Schroer M. D., Maialle M. Z., Degani M. H., and Petta J. R., “Extreme harmonic generation in electrically driven spin resonance”, Phys. Rev. Lett 112 (2014) 227601.
[20] Zaks B., Liu R. B., and Sherwin M. S., “Experimental observation of electron-hole recollisions”, Nature (London) 483, 580-583 (2012).
[21] Nadj-Perge S., Pribiag V. S., J. W. G. van den Berg J. W. G., Zuo K., Plissard S. R., Bakkers E. P. A. M., Frolov S. M., and Kouwenhoven L. P., “Spectroscopy of spin-orbit quantum bits in indium antimonide nanowires”, Phys. Rev. Lett 108(2012) 166801.
[22] Laird E. A., Barthel C., Rashba E. I., Marcus C. M., Hanson M. P., and Gossard A. C., “A new mechanism of electric dipole spin resonance: hyperfine coupling in quantum dots”, Semicond. Sci. Technol 24 (2009) 064004.
[23] Cohen-Tannoudji B. D., Laloe C. and F., “Quantum Mechanics Volume One”, (Wiley, New York, 1977).
[24] Shytov A. V., Ivanov D. A., and Feigel’man M. V., “Landau-Zener interferometry for qubits”, Eur.Phys. J.B 36, 263-269 (2003).
[25] Rashba E. I., “Mechanism of half-frequency electric dipole spin resonance in double quantum dots: Effect of nonlinear charge dynamics inside the singlet manifold”, Phys. Rev.B 84 (2011) 241305.
[26] Széchenyi G. and Palyi A., “Maximal Rabi frequency of an electrically driven spin in a disordered magnetic field”, Phys. Rev.B 89 (2014) 115409.
[27] Nowak M. P., Szafran B., and Peeters F. M., “Resonant harmonic generation and collective spin rotations in electrically driven quantum dots”, Phys. Rev.B 86 (2012) 125428.
[28] Danon J. and Rudner M. S., “Multilevel interference resonances in strongly driven three-level systems”, Phys. Rev. Lett 113 (2014) 247002.
[29] Karami M., Javdani A. and Karami K., “Modeling the level structure of a double quantum dot in the two-electron regime”, J. Phys. B: At. Mol. Opt. Phys. 52 (2019) 025504.
[30] Krainov V. P., Sov. “Theory of resonance multiphoton transitions in a three-level system under the influence of a strong electromagnetic field”, Phys. JETP 43, 622-625 (1976).
[31] Landau L. D., “Zur theorie der energieubertragung. II”, Phys. Z. Sowjetunion 2,46-51 (1932).
[32] Zener C., “Non-adiabatic crossing of energy levels”, Proc. R. Soc. London, Ser. A 137, 696-702 (1932).
[33] Stuckelberg E. C. G., “Theorie der unelastischen Stosse zwischen Atomen”, Helv. Phys. Acta 5, 117-171 (1932).
[34] Majorana E., “Atomi orientati in campo magnetico variabile”, Nuovo Cimento 9,43-50 (1932).
[35] Nowack K. C., Koppens F. H. L., Nazarov Y. V., and Vandersypen L. M. K., “Coherent control of a single electron spin with electric fields”, Science 318, 1430-1433 (2007).
[36] Laird E. A., Barthel C., Rashba E. I., Marcus C. M., Hanson M. P., and Gossard A. C., “Hyperfine-mediated gate-driven electron spin resonance”, Phys. Rev. Lett 99(2007) 246601.
[37] Nadj-Perge S., Frolov S. M., van Tilburg J. W. W., Danon J., Nazarov Y. V., Algra R., Bakkers E. P. A. M., and Kouwenhoven L. P., “Disentangling the effects of spin-orbit and hyperfine interactions on spin blockade”, Phys. Rev.B 81 (2010) 201305.